A064093 Generalized Catalan numbers C(10; n).
1, 1, 11, 221, 5531, 154941, 4649451, 146150061, 4750427771, 158361063581, 5384626548491, 186023930383501, 6511108452179611, 230400987949757821, 8228844334672249131, 296245683962814194541, 10739133812893020645051
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..620
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 20); Coefficients(R!( (19 - Sqrt(1-40*x))/(2*(x+9)) )); // G. C. Greubel, May 02 2019 -
Mathematica
CoefficientList[Series[(19 -Sqrt[1-40*x])/(2*(x+9)), {x, 0, 20}], x] (* G. C. Greubel, May 02 2019 *)
-
PARI
my(x='x+O('x^20)); Vec((19 -sqrt(1-40*x))/(2*(x+9))) \\ G. C. Greubel, May 02 2019
-
Sage
((19 -sqrt(1-40*x))/(2*(x+9))).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 02 2019
Formula
G.f.: (1 + 10*x*c(10*x)/9)/(1+x/9) = 1/(1 - x*c(10*x)) with c(x) g.f. of Catalan numbers A000108.
a(n) = Sum_{m=0..n-1} (n-m)*binomial(n-1+m, m)*(10^m)/n.
a(n) = (-1/9)^n*(1 - 10*Sum_{k=0..n-1} C(k)*(-90)^k ), n >= 1, a(0) := 1; with C(n)=A000108(n) (Catalan).
a(n) = Sum_{k=0..n} A059365(n, k)*10^(n-k). - Philippe Deléham, Jan 19 2004
a(n) ~ 2^(3*n + 1) * 5^(n+1) / (361*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jun 10 2019
Comments