cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064094 Triangle composed of generalized Catalan numbers.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 3, 1, 1, 1, 14, 13, 4, 1, 1, 1, 42, 67, 25, 5, 1, 1, 1, 132, 381, 190, 41, 6, 1, 1, 1, 429, 2307, 1606, 413, 61, 7, 1, 1, 1, 1430, 14589, 14506, 4641, 766, 85, 8, 1, 1, 1, 4862, 95235, 137089, 55797, 10746, 1279, 113, 9, 1, 1
Offset: 0

Views

Author

Wolfdieter Lang, Sep 13 2001

Keywords

Comments

The column m sequence (without leading zeros and the first 1) appears in the Derrida et al. 1992 reference as Z_{N}=Y_{N}(N+1), N >=0, for alpha = m, beta = 1 (or alpha = 1, beta = m). In the Derrida et al. 1993 reference the formula in eq. (39) gives Z_{N}(alpha,beta)/(alpha*beta)^N for N>=1.

Examples

			Triangle begins:
  1;
  1,    1;
  1,    1,     1;
  1,    2,     1,     1;
  1,    5,     3,     1,    1;
  1,   14,    13,     4,    1,   1;
  1,   42,    67,    25,    5,   1,   1;
  1,  132,   381,   190,   41,   6,   1,   1;
  1,  429,  2307,  1606,  413,  61,   7,   1,   1;
  1, 1430, 14589, 14506, 4641, 766,  85,   8,   1,   1;
		

Crossrefs

Columns (without leading zeros): A000012 (k=0), A000108 (k=1), A064062 (k=2), A064063 (k=3), A064087 (k=4), A064088 (k=5), A064089 (k=6), A064090 (k=7), A064091 (k=8), A064092 (k=9), A064093 (k=10).
Cf. A064095 (row sums).

Programs

  • Magma
    function A064094(n,k)
      if k eq 0 or k eq n then return 1;
      else return (&+[(n-k-j)*Binomial(n-k-1+j, j)*k^j: j in [0..n-k-1]])/(n-k);
      end if;
    end function;
    [A064094(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 27 2024
    
  • Mathematica
    T[n_, 0] = 1; T[n_, 1] := CatalanNumber[n - 1]; T[n_, n_] = 1; T[n_, m_] := (1/(1 - m))^(n - m)*(1 - m*Sum[ CatalanNumber[k]*(m*(1 - m))^k, {k, 0, n - m - 1}]); Table[ T[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jul 05 2013 *)
  • SageMath
    def A064094(n,k):
        if (k==0 or k==n): return 1
        else: return sum((n-k-j)*binomial(n-k-1+j,j)*k^j for j in range(n-k))//(n-k)
    flatten([[A064094(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Sep 27 2024

Formula

G.f. for column m: (x^m)/(1-x*c(m*x)) = (x^m)*((m-1)+m*x*c(m*x))/(m-1+x) with the g.f. c(x) of Catalan numbers A000108.
T(n, m) = Sum_{j=0..n-m-1} (n-m-j)*binomial(n-m-1+j, j)*(m^j)/(n-m) or T(n, m) = (1/(1-m))^(n-m)*(1 - m*Sum_{j=0..n-m-1} C(j)*(m*(1-m))^j ), for n - m >= 1, T(n, n) = 1, T(n, m) = 0 if nA000108(k) (Catalan).