A064094 Triangle composed of generalized Catalan numbers.
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 3, 1, 1, 1, 14, 13, 4, 1, 1, 1, 42, 67, 25, 5, 1, 1, 1, 132, 381, 190, 41, 6, 1, 1, 1, 429, 2307, 1606, 413, 61, 7, 1, 1, 1, 1430, 14589, 14506, 4641, 766, 85, 8, 1, 1, 1, 4862, 95235, 137089, 55797, 10746, 1279, 113, 9, 1, 1
Offset: 0
Examples
Triangle begins: 1; 1, 1; 1, 1, 1; 1, 2, 1, 1; 1, 5, 3, 1, 1; 1, 14, 13, 4, 1, 1; 1, 42, 67, 25, 5, 1, 1; 1, 132, 381, 190, 41, 6, 1, 1; 1, 429, 2307, 1606, 413, 61, 7, 1, 1; 1, 1430, 14589, 14506, 4641, 766, 85, 8, 1, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- B. Derrida, E. Domany, and D. Mukamel, An exact solution of a one-dimensional asymmetric exclusion model with open boundaries, J. Stat. Phys. 69, 1992, 667-687; eqs. (20), (21), p. 672.
- B. Derrida, M. R. Evans, V. Hakim, and V. Pasquier, Exact solution of a 1D asymmetric exclusion model using a matrix formulation, J. Phys. A 26, 1993, 1493-1517; eq. (39), p. 1501, also appendix A1, (A12) p. 1513.
Crossrefs
Programs
-
Magma
function A064094(n,k) if k eq 0 or k eq n then return 1; else return (&+[(n-k-j)*Binomial(n-k-1+j, j)*k^j: j in [0..n-k-1]])/(n-k); end if; end function; [A064094(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 27 2024
-
Mathematica
T[n_, 0] = 1; T[n_, 1] := CatalanNumber[n - 1]; T[n_, n_] = 1; T[n_, m_] := (1/(1 - m))^(n - m)*(1 - m*Sum[ CatalanNumber[k]*(m*(1 - m))^k, {k, 0, n - m - 1}]); Table[ T[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jul 05 2013 *)
-
SageMath
def A064094(n,k): if (k==0 or k==n): return 1 else: return sum((n-k-j)*binomial(n-k-1+j,j)*k^j for j in range(n-k))//(n-k) flatten([[A064094(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Sep 27 2024
Formula
G.f. for column m: (x^m)/(1-x*c(m*x)) = (x^m)*((m-1)+m*x*c(m*x))/(m-1+x) with the g.f. c(x) of Catalan numbers A000108.
T(n, m) = Sum_{j=0..n-m-1} (n-m-j)*binomial(n-m-1+j, j)*(m^j)/(n-m) or T(n, m) = (1/(1-m))^(n-m)*(1 - m*Sum_{j=0..n-m-1} C(j)*(m*(1-m))^j ), for n - m >= 1, T(n, n) = 1, T(n, m) = 0 if nA000108(k) (Catalan).
Comments