cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064104 Primes p = p(k) such that p(k) + p(k+11) = p(k+1) + p(k+10) = p(k+2) + p(k+9) = p(k+3) + p(k+8) = p(k+4) + p(k+7) = p(k+5) + p(k+6).

Original entry on oeis.org

137, 55787, 113131, 179021, 895789, 1150649, 3086003, 4026103, 4077559, 8021753, 8750857, 12577063, 14355559, 19136527, 19412863, 20065961, 21865339, 22633141, 25880177, 30404971, 33926159, 38202173, 41905891, 42925699
Offset: 1

Views

Author

Robert G. Wilson v, Sep 17 2001

Keywords

Examples

			137 + 193 = 139 + 191 = 149 + 181 = 151 + 179 = 157 + 173 = 163 + 167.
		

Crossrefs

Programs

  • Mathematica
    a = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; Do[ a = Delete[ a, 1 ]; a = Append[ a, Prime[ n ] ]; If[ a[ [ 1 ] ] + a[ [ 12 ] ] == a[ [ 2 ] ] + a[ [ 11 ] ] == a[ [ 3 ] ] + a[ [ 10 ] ] == a[ [ 4 ] ] + a[ [ 9 ] ] == a[ [ 5 ] ] + a[ [ 8 ] ] == a[ [ 6 ] ] + a[ [ 7 ] ], Print[ a[ [ 1 ] ] ] ], {n, 1, 10^6} ]
    okQ[n_]:=Length[Union[Take[n,6]+Reverse[Take[n,-6]]]]==1; Transpose[ Select[Partition[Prime[Range[2700000]],12,1],okQ]][[1]] (* Harvey P. Dale, Apr 25 2011 *)

Formula

Primes p = prime(k) = A000040(k) such that A359440(k+5) >= 5. - Peter Munn, Jan 13 2023