cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064122 Number of divisors of 3^n - 1 that are relatively prime to 3^m - 1 for all 0 < m < n.

Original entry on oeis.org

2, 1, 2, 2, 3, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 4, 4, 4, 4, 2, 2, 4, 4, 2, 4, 2, 8, 4, 8, 4, 8, 2, 2, 8, 4, 2, 4, 4, 8, 2, 8, 4, 4, 4, 8, 2, 16, 8, 32, 4, 4, 4, 8, 4, 4, 4, 8, 8, 4, 2, 4, 4, 2, 2, 8, 4, 8, 4, 4, 2, 2, 2, 16, 8, 8, 4, 8, 16, 8, 4, 8, 4, 16, 4, 4, 2, 8, 8, 8, 4, 4, 4, 4, 8, 4, 4, 8, 4, 4, 8
Offset: 1

Views

Author

Robert G. Wilson v, Sep 10 2001

Keywords

Crossrefs

Cf. A063982.

Programs

  • Mathematica
    a = {1}; Do[ d = Divisors[ 3^n - 1 ]; l = Length[ d ]; c = 0; k = 1; While[ k < l + 1, If[ Union[ GCD[ a, d[ [ k ] ] ] ] == {1}, c++ ]; k++ ]; Print[ c ]; a = Union[ Flatten[ Append[ a, Transpose[ FactorInteger[ 3^n - 1 ] ][ [ 1 ] ] ] ] ], {n, 1, 100} ]
  • PARI
    { allocatemem(932245000); for (n=1, 167, d=divisors(3^n - 1); l=length(d); a=0; for (i=1, l, t=1; for (m=1, n - 1, p=3^m - 1; if (gcd(d[i], p)!=1, t=0; break)); if (t, a++)); write("b064122.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 08 2009