cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064141 Sum of non-unitary divisors of central binomial coefficient C(n, floor(n/2)).

Original entry on oeis.org

0, 0, 0, 0, 0, 12, 0, 0, 72, 328, 0, 768, 1344, 4032, 3024, 9072, 0, 36288, 0, 120960, 322560, 967680, 0, 1935360, 6013440, 15966720, 43545600, 104094720, 163296000, 362361600, 149299200, 447897600, 1194393600, 4644864000, 2654208000
Offset: 1

Views

Author

Labos Elemer, Sep 11 2001

Keywords

Examples

			For n = 6, binomial(6,3) = 20 = 4*5, divisors = {1,2,4,5,10,20} of which the non-unitary divisors are 2 and 10 with sum a(6) = 12.
		

Crossrefs

Programs

  • Mathematica
    nus[n_] := If[n==1, 0, DivisorSigma[1, n] - Times @@ (1 + Power @@@ FactorInteger[n])]; Table[nus@ Binomial[n, Floor[n/2]], {n, 35}] (* Giovanni Resta, Jun 22 2018 *)
  • PARI
    usigma(n)= { my(f,s=1); f=factor(n); for(i=1, matsize(f)[1], s*=1 + f[i, 1]^f[i, 2]); return(s) }
    a(n)={my(b=binomial(n, n\2)); sigma(b) - usigma(b);} \\ Harry J. Smith, Sep 08 2009

Formula

a(n) = A048146(A001405(n)). [corrected by Amiram Eldar, Mar 07 2025]
If n is in A046098 then a(n)=0.