A064190 Triangle T(n,k) generalizing the tangent numbers.
1, 2, 6, 16, 48, 72, 272, 816, 1440, 1440, 7936, 23808, 44352, 57600, 43200, 353792, 1061376, 2027520, 2903040, 3024000, 1814400, 22368256, 67104768, 129964032, 195379200, 232243200, 203212800, 101606400, 1903757312, 5711271936
Offset: 0
Examples
Triangle begins: 1; 2, 6; 16, 48, 72; 272, 816, 1440, 1440; ...
Links
- J. L. Arregui, Tangent and Bernoulli numbers related to Motzkin and Catalan numbers by means of numerical triangles, arXiv:math/0109108 [math.NT], 2001.
Crossrefs
Programs
-
Mathematica
t[1, 1] = 1; t[1, 0] = 0; t[n_ /; n > 1, m_] := t[n, m] = m*(m+1)*Sum[t[n-1, k], {k, m-1, n-1}]; Table[t[n, k], {n, 1, 8}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 02 2013 *)
Formula
T(n+1, m) = m*(m+1)*Sum_{k = m-1..n} T(n, k).
Extensions
More terms from Vladeta Jovovic, Sep 22 2001