A064219 a(1) = 1; a(n) > 0; for each k from 1 to n, k divides a(n) or a(n)+1 and a(n) is the least such integer.
1, 1, 2, 3, 15, 24, 35, 119, 504, 720, 2519, 2519, 41040, 83160, 83160, 196559, 524160, 524160, 3160079, 3160079, 3160079, 3160079, 68468400, 68468400, 68468400, 68468400, 4724319600, 4724319600, 26702675999, 26702675999
Offset: 1
Examples
a(5)=15 because (2 divides a(5)+1) and (3 divides a(5)) and (4 divides a(5)+1) and (5 divides a(5)).
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..112
- Sean A. Irvine, Java program (github)
Programs
-
PARI
{ a=1; for (n=1, 100, if (a%n && (a+1)%n, until (b, b=1; a++; for (k=1, n, if (a%k && (a+1)%k, b=0; break)))); write("b064219.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 10 2009
-
Python
from math import lcm from itertools import product from sympy.ntheory.modular import solve_congruence def A064219(n): if n == 1: return 1 alist, blist, c, klist = [], [], 1, list(range(n,1,-1)) while klist: k = klist.pop(0) if not c%k: blist.append(k) else: c = lcm(c,k) alist.append(k) for m in klist.copy(): if not k%m: klist.remove(m) for d in product([0,1],repeat=len(alist)): x = solve_congruence(*list(zip(d,alist))) if x is not None: y = x[0] if y > 1: for b in blist: if y%b > 1: break else: if y < c: c = y return int(c-1) # Chai Wah Wu, Jun 19 2023