A064234 The least k such that A063994(k) = Product_{primes p dividing k} gcd(p-1, k-1) = n, or 0 if there's no such k.
1, 3, 28, 5, 66, 7, 232, 45, 190, 11, 276, 13, 1106, 0, 286, 17, 1854, 19, 3820, 891, 2752, 23, 1128, 595, 2046, 0, 532, 29, 1770, 31, 9952, 425, 1288, 0, 2486, 37, 8474, 0, 742, 41, 3486, 43, 7612, 5589, 2356, 47, 13584, 325, 9850, 0, 20554, 53, 5778, 0, 12926, 435, 13282, 59, 42540, 61
Offset: 1
Keywords
Links
- Richard N. Smith, Table of n, a(n) for n = 1..187
- Richard N. Smith, Numbers n such that A063994(n) is an even nontotient (format: n,A063994(n))
Programs
-
Mathematica
f[ n_ ] := If[ n == 1, 1, Apply[ Times, GCD[ n - 1, Transpose[ FactorInteger[ n ] ] [ [ 1 ] ] - 1 ] ] ]; a = Table[ 0, {100} ]; Do[ m = f[ n ]; If[ m < 101 && a[ [ m ] ] == 0, a[ [ m ] ] = n ], {n, 1, 10^7} ]; a a(54) > 2*10^7. The zeros appear at positions that are the values in the sequence A005277, the nontotients: even n such that phi(m) = n has no solution. [Warning: This is wrong, see the "comment" section]
-
PARI
a063994(n)=my(f=factor(n)[, 1]); prod(i=1, #f, gcd(f[i]-1, n-1)) a(n)=if(n%4==2 && !isprime(n+1), 0, for(k=1, 2^30, if(a063994(k)==n,return(k)))) \\ Richard N. Smith, Jul 15 2019, after Charles R Greathouse IV in A063994
Extensions
a(54) - a(60) from Richard N. Smith, Jul 15 2019
Comments