cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064273 Permutation of nonnegative integers: a(n) = A013928(A019565(n)).

Original entry on oeis.org

0, 1, 2, 4, 3, 6, 10, 18, 5, 9, 13, 27, 22, 43, 64, 128, 7, 14, 20, 40, 33, 68, 100, 202, 47, 93, 143, 282, 232, 469, 702, 1404, 8, 16, 25, 48, 39, 79, 119, 235, 56, 110, 167, 333, 278, 553, 832, 1660, 88, 175, 260, 520, 437, 872, 1303, 2609, 608, 1216, 1826, 3649
Offset: 0

Views

Author

Howard A. Landman, Sep 23 2001

Keywords

Comments

From Antti Karttunen, Aug 24 2014: (Start)
The original name of the sequence was: "Inverse of sequence A048672 considered as a permutation of the nonnegative integers".
However, the real inverse to A048672 is A246353(n) (= a(n)+1), satisfying A246353(A048672(n)) = n for all n. This sequence subtracts one from the terms of A246353 so as to obtain a permutation of nonnegative integers (bijection [0..] --> [0..]).
Sequence is obtained when the range of A019565 is compacted so that it becomes surjective, thus the logarithmic scatter plots look very similar. (Same applies to A246353.) Compare also to the plot of A005940.
(End)

Crossrefs

One less than A246353.

Programs

  • PARI
    allocatemem(234567890);
    default(primelimit, 2^22)
    uplim_for_13928 = 13123111;
    v013928 = vector(uplim_for_13928); A013928(n) = v013928[n];
    v013928[1]=0; n=1; while((n < uplim_for_13928), if(issquarefree(n), v013928[n+1] = v013928[n]+1, v013928[n+1] = v013928[n]); n++);
    A019565(n) = {factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ M. F. Hasler
    A064273(n) = A013928(A019565(n));
    for(n=0, 478, write("b064273.txt", n, " ", A064273(n))); \\ Antti Karttunen, Aug 23 2014
    
  • Python
    from math import prod, isqrt
    from sympy import prime, mobius
    def A064273(n):
        m = prod(prime(i) for i,j in enumerate(bin(n)[-1:1:-1],1) if j=='1')
        return int(sum(mobius(k)*(m//k**2) for k in range(1, isqrt(m)+1))-1) # Chai Wah Wu, Feb 23 2025
  • Scheme
    (define (A064273 n) (let loop ((n n) (i 1) (p 1)) (cond ((zero? n) (- (A013928 (+ 1 p)) 1)) ((odd? n) (loop (/ (- n 1) 2) (+ 1 i) (* p (A000040 i)))) (else (loop (/ n 2) (+ 1 i) p))))) ;; Antti Karttunen, Aug 23 2014
    

Formula

From Antti Karttunen, Aug 24 2014: (Start)
a(n) = A013928(A019565(n)).
a(n) = A246353(n) - 1.
(End)

Extensions

More terms from Carl R. White, Apr 19 2006
Name changed by Antti Karttunen, Aug 23 2014