A064281 Least k such that k*10^n+1, k*10^n+3, k*10^n+7 and k*10^n+9 are all prime.
4, 1, 1, 13, 676, 283, 14311, 12022, 27346, 14965, 3427, 100942, 12370, 1237, 3274, 42382, 18619, 4570, 457, 434869, 203362, 305491, 213742, 436831, 217198, 168586, 258214, 215737, 1312441, 272848, 744082, 2059111, 351055, 712333, 1880302
Offset: 0
Keywords
Links
- Sean A. Irvine, Table of n, a(n) for n = 0..50
Programs
-
Mathematica
Do[k = 1; While[ !PrimeQ[k*10^n + 1] || !PrimeQ[k*10^n + 3] || !PrimeQ[k*10^n + 7] || !PrimeQ[k*10^n + 9], k++ ]; Print[k], {n, 0, 20} ] lk[n_]:=Module[{k=1},While[!AllTrue[k*10^n+{1,3,7,9},PrimeQ],k++];k]; Array[lk,40,0] (* Harvey P. Dale, Sep 03 2024 *)