cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064330 Generalized Catalan numbers C(-8; n).

Original entry on oeis.org

1, 1, -7, 113, -2263, 50721, -1217703, 30622929, -796311415, 21237226625, -577699502407, 15966537989425, -447086291268119, 12656524451911393, -361628025405250023, 10415207118205622673, -302049007052246016183
Offset: 0

Views

Author

Wolfdieter Lang, Sep 21 2001

Keywords

Comments

See triangle A064334 with columns m built from C(-m; n), m >= 0, also for Derrida et al. references.

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (17 +Sqrt(1+32*x))/(2*(9-x)) )); // G. C. Greubel, May 03 2019
    
  • Mathematica
    CoefficientList[Series[(17 +Sqrt[1+32*x])/(2*(9-x)), {x, 0, 30}], x] (* G. C. Greubel, May 03 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((17 +sqrt(1+32*x))/(2*(9-x))) \\ G. C. Greubel, May 03 2019
    
  • Sage
    ((17 +sqrt(1+32*x))/(2*(9-x))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 03 2019

Formula

a(n) = Sum_{m=0..n-1} (n-m)*binomial(n-1+m, m)*(-8)^m/n.
a(n) = (1/9)^n*(1 + 8*Sum_{k=0..n-1} C(k)*(-8*9)^k ), n >= 1, a(0) := 1; with C(n)=A000108(n) (Catalan).
G.f.: (1+8*x*c(-8*x)/9)/(1-x/9) = 1/(1-x*c(-8*x)) with c(x) g.f. of Catalan numbers A000108.