cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064348 Numbers k such that k and k+1 have the same sum of unitary divisors and the same number of divisors.

Original entry on oeis.org

14, 44, 1334, 1634, 2295, 2685, 3195, 17255, 33998, 42818, 45716, 79316, 84134, 122073, 124676, 125811, 166934, 239499, 289454, 294151, 383594, 440013, 544334, 605985, 649154, 655005, 736515, 1163624, 1325511, 1364104
Offset: 1

Views

Author

Jason Earls, Oct 15 2001

Keywords

Crossrefs

Programs

  • Mathematica
    g[1]={1,1}; g[n_] := {Times @@ ((f = FactorInteger[n])[[;;,2]] + 1), Times @@ (1 + Power @@@ f)}; s={}; g1={0,0}; Do[g2=g[n]; If[g1==g2, AppendTo[s,n-1]]; g1=g2, {n, 1, 50000}]; s (* Amiram Eldar, Jun 19 2019 *)
  • PARI
    {usigma(n, s=1, fac, i) = fac=factor(n); for(i=1,matsize(fac)[1], s=s*(1+fac[i,1]^fac[i,2]) ); return(s); } for(n=1,10^6, if(usigma(n)==usigma(n+1) && numdiv(n)==numdiv(n+1),print1(n,",")))
    
  • PARI
    usigma(n)= { local(f,s=1); f=factor(n); for(i=1, matsize(f)[1], s*=1 + f[i, 1]^f[i, 2]); return(s) } { n=0; s=0; d=0; for (m=1, 10^9, us=usigma(m + 1); ud=numdiv(m + 1); if(s==us && d==ud, write("b064348.txt", n++, " ", m); if (n==100, break)); s=us; d=ud ) } \\ Harry J. Smith, Sep 12 2009