cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064363 Number of 2 X 2 regular integer matrices with elements from {0,...,n} up to row and column permutation.

Original entry on oeis.org

0, 2, 14, 51, 133, 289, 547, 954, 1546, 2380, 3508, 5005, 6915, 9347, 12353, 16028, 20468, 25790, 32054, 39427, 47965, 57833, 69155, 82082, 96682, 113192, 131720, 152429, 175467, 201075, 229305, 260492, 294700, 332182, 373138, 417751, 466201
Offset: 0

Views

Author

Vladeta Jovovic, Sep 25 2001

Keywords

Examples

			There are 2 binary regular matrices up to row and column permutation:
[1 0] [1 1]
[0 1] [1 0].
		

Crossrefs

Programs

  • Mathematica
    A059306[0] = 1; A059306[n_] := Table[{w, x, y, z} /. {ToRules[ Reduce[0 <= x <= n && 0 <= y <= n && 0 <= z <= n && w*z - x*y == 0, {x, y, z}, Integers]]}, {w, 0, n}] // Flatten[#, 1] & // Length; a[n_] := ((n + 1)*(n^3 + 3*n^2 + 4*n + 1) - A059306[n])/4; Table[Print[an = a[n]]; an, {n, 0, 36}] (* Jean-François Alcover, Nov 26 2013 *)

Formula

a(n) = ((n+1)*(n^3+3*n^2+4*n+1)-A059306(n))/4.