cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064391 Triangle T(n,k) with zeroth row {1} and row n for n >= 1 giving number of partitions of n with crank k, for -n <= k <= n.

Original entry on oeis.org

1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 1, 0, 1, 1, 0, 1, 1, 2, 1, 3, 2, 3, 2, 3, 2, 3, 1, 2, 1, 1, 0, 1, 1, 0, 1, 1, 2
Offset: 0

Views

Author

N. J. A. Sloane, Sep 29 2001

Keywords

Comments

For a partition p, let l(p) = largest part of p, w(p) = number of 1's in p, m(p) = number of parts of p larger than w(p). The crank of p is given by l(p) if w(p) = 0, otherwise m(p)-w(p).
n-th row contains 2n+1 terms.

Examples

			{T(20, k), -20 <= k <=20} = {1, 0, 1, 1, 2, 2, 4, 4, 7, 8, 12, 13, 19, 20, 26, 28, 34, 34, 39, 38, 41, 38, 39, 34, 34, 28, 26, 20, 19, 13, 12, 8, 7, 4, 4, 2, 2, 1, 1, 0, 1}.
From _Omar E. Pol_, Mar 04 2012: (Start)
Triangle begins:
.                          1;
.                       1, 0, 0;
.                    1, 0, 0, 0, 1;
.                 1, 0, 0, 1, 0, 0, 1;
.              1, 0, 1, 0, 1, 0, 1, 0, 1;
.           1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1;
.        1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1;
.     1, 0, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 0, 1;
.  1, 0, 1, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 1, 0, 1;
1, 0, 1, 1, 2, 1, 3, 2, 3, 2, 3, 2, 3, 1, 2, 1, 1, 0, 1;
(End)
		

Crossrefs

Row sums give A000041. - Omar E. Pol, Mar 04 2012

Programs

  • Mathematica
    max = 12; f[k_ /; k < 0] := f[-k]; f[k_] := Sum[(-1)^m*x^(k*m)*(x^((m^2 + m)/2) - x^((m^2 - m)/2)), {m, 1, max}]/Product[1 - x^m, {m, 1, max}]; t = Table[ Series[f[k], {x, 0, max}] // CoefficientList[#, x]&, {k, -(max-2), max-2}] // Transpose; Table[If[n == 2, {1, 0, 0}, Table[t[[n, k]], {k, max-n, max+n-2}]], {n, 1, max-1}] // Flatten (* Jean-François Alcover, Apr 11 2013, after Vladeta Jovovic *)
  • Sage
    for n in (0..9): # computes the sequence as a triangle
        a = [p.crank() for p in Partitions(n)]
        [a.count(k) for k in (-n..n)] # Peter Luschny, Sep 15 2014

Formula

G.f. for k-th column is Sum(m>=1, (-1)^m*x^(k*m)*(x^((m^2+m)/2)-x^((m^2-m)/2)))/Product(m>=1, 1-x^m). - Vladeta Jovovic, Dec 22 2004

Extensions

More terms from Vladeta Jovovic, Sep 29 2001