cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A265576 LCM-transform of EKG sequence A064413.

Original entry on oeis.org

1, 2, 2, 3, 1, 3, 1, 2, 5, 1, 1, 1, 7, 1, 1, 1, 2, 1, 11, 1, 1, 3, 1, 5, 1, 1, 13, 1, 1, 1, 2, 17, 1, 1, 1, 19, 1, 1, 1, 1, 1, 23, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 29, 1, 1, 1, 31, 1, 1, 1, 2, 1, 37, 1, 1, 1, 1, 1, 1, 41, 1, 1, 3, 1, 1, 1, 43, 1, 1, 1, 1, 1, 1, 1, 47, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 53
Offset: 1

Views

Author

N. J. A. Sloane, Jan 02 2016

Keywords

Comments

This is not equal to A383293(n) = A014963(A064413(n)) because the EKG-permutation doesn't satisfy the property that all prime powers should appear before any of their multiples, as, for example, A064413(4) = 6 comes before A064413(5) = 3. See comments in A368900. - Antti Karttunen, Jan 13 2024

Crossrefs

Cf. A064413, A383284 (rgs-transform), A383285 (positions of terms > 1), A383295.
Positions of records: {2} U A064423.
Other LCM-transforms are A014963, A061446, A265574, A265575, A368900 (see the last one for many other examples), A383258.
Cf. also A383293.

Programs

  • Maple
    LCMXfm:=proc(a) local L,i,n,g,b;
    L:=nops(a);
    g:=Array(1..L,0); b:=Array(1..L,0);
    b[1]:=a[1]; g[1]:=a[1];
    for n from 2 to L do g[n]:=ilcm(g[n-1],a[n]); b[n]:=g[n]/g[n-1]; od;
    lprint([seq(b[i],i=1..L)]);
    end;
    # let t1 contain the first 100 terms of A064413
    LCMXfm(t1);
  • Mathematica
    LCMXfm[a_List] := Module[{L = Length[a], b, g}, b[1] = g[1] = a[[1]]; b[] = 0; g[] = 0; Do[g[n] = LCM[g[n - 1], a[[n]]]; b[n] = g[n]/g[n - 1], {n, 2, L}]; Array[b, L]];
    ekg[1] = 1; ekg[2] = 2; ekg[n_] := ekg[n] = For[k = 1, True, k++, If[FreeQ[ Array[ekg, n - 1], k] && !CoprimeQ[k, ekg[n - 1]], Return[k]]];
    LCMXfm[Array[ekg, 100]] (* Jean-François Alcover, Dec 05 2017 *)
  • PARI
    LCMtransform(v) = { my(len = length(v), b = vector(len), g = vector(len)); b[1] = g[1] = 1; for(n=2, len, g[n] = lcm(g[n-1], v[n]); b[n] = g[n]/g[n-1]); (b); };
    up_to = 20000;
    v265576 = LCMtransform(vector(up_to, i, A064413(i))); \\ With precomputed A064413.
    A265576(n) = v265576[n]; \\ Antti Karttunen, Apr 21 2025

Formula

a(n) = lcm {1..A064413(n)} / lcm {1..A064413(n-1)}. - Antti Karttunen, Apr 21 2025

Extensions

More terms from Antti Karttunen, Apr 21 2025

A304526 Möbius transform of A064664, the inverse of EKG-sequence.

Original entry on oeis.org

1, 1, 4, 1, 9, -2, 13, 5, 1, -2, 19, 2, 27, -2, -3, 9, 32, 7, 36, 8, -3, -2, 42, 4, 14, -2, 16, 12, 56, 15, 60, 14, -3, -2, 2, 15, 66, -2, -3, 17, 73, 23, 80, 21, 27, -2, 88, 20, 36, 23, -3, 19, 99, 20, 24, 18, -3, -2, 106, 18, 114, -2, 35, 33, 17, 41, 127, 32, -3, 33, 133, 24, 137, -2, 44, 34, 45, 44, 150, 23, 54, -2, 159, 27, 42, -2, -3, 33, 166, 25, 52
Offset: 1

Views

Author

Antti Karttunen, May 18 2018

Keywords

Crossrefs

Programs

Formula

a(n) = Sum_{d|n} A008683(n/d)*A064664(d).
a(n) = A064664(n) - A304527(n).
For all n >= 1, a(A000040(n)) = A064423(n).
For n >= 2, a(2*A000040(n)) = -2.
For n >= 3, a(3*A000040(n)) = -3.
a(n) = Sum_{d|n} A000010(n/d)*A349617(d). - Antti Karttunen, Jan 27 2024

A064425 Gaps between where primes occur in A064413.

Original entry on oeis.org

3, 5, 4, 6, 8, 5, 4, 6, 14, 4, 6, 7, 7, 8, 11, 7, 8, 13, 6, 4, 13, 9, 7, 15, 7, 8, 6, 4, 9, 20, 17, 6, 5, 15, 8, 10, 8, 9, 14, 8, 8, 19, 8, 6, 4, 20, 19, 10, 8, 6, 14, 4, 12, 13, 14, 9, 7, 13, 10, 9, 8, 24, 6, 12, 7, 23, 10, 16, 9, 6, 11, 18, 8, 17, 6, 6, 20, 10, 15
Offset: 1

Views

Author

N. J. A. Sloane, Oct 01 2001

Keywords

Crossrefs

Cf. A064413. First differences of A064955 and also of A064423.
Cf. A137847.

Programs

  • Mathematica
    terms = 80;
    ekg[s_] := Block[{m = s[[-1]], k = 3}, While[MemberQ[s, k] || GCD[m, k] == 1, k++]; Append[s, k]];
    EKG = Nest[ekg, {2, 4}, 12 terms];
    fp[n_] := FirstPosition[EKG, Prime[n]][[1]];
    Array[fp, terms] // Differences (* Jean-François Alcover, Sep 02 2018, after Robert G. Wilson v in A064413 *)

A305293 Prime shift towards larger primes, conjugated by the EKG-permutation: a(n) = A064664(A003961(A064413(n))).

Original entry on oeis.org

1, 5, 6, 11, 10, 24, 39, 22, 15, 14, 25, 69, 21, 20, 53, 130, 76, 51, 29, 28, 54, 112, 97, 50, 78, 96, 34, 33, 84, 209, 232, 38, 37, 85, 153, 44, 43, 111, 156, 179, 109, 58, 57, 142, 383, 140, 148, 352, 281, 124, 249, 299, 93, 118, 218, 62, 61, 143, 172, 68, 67, 173, 641, 696, 162, 75, 74, 210, 227, 238, 191, 535, 82, 81
Offset: 1

Views

Author

Antti Karttunen, May 31 2018

Keywords

Comments

Permutation of A064957.

Crossrefs

Cf. A305294 (a left inverse).

Formula

a(n) = A064664(A003961(A064413(n))).
Other identities. For all n >= 1:
A305294(a(n)) = n.
a(A064955(n)) = A064955(1+n).
For all n >= 2, a(A064423(n)) = 1+A064955(1+n).

A383285 Positions of terms > 1 in A265576, where A265576 is the LCM-transform of EKG-sequence.

Original entry on oeis.org

2, 3, 4, 6, 8, 9, 13, 17, 19, 22, 24, 27, 31, 32, 36, 42, 50, 56, 60, 64, 66, 73, 76, 80, 88, 99, 106, 112, 114, 122, 124, 127, 133, 137, 150, 159, 166, 171, 181, 188, 196, 202, 206, 215, 232, 235, 240, 252, 258, 263, 278, 286, 290, 296, 304, 313, 319, 327, 335, 343, 359, 362, 370, 376, 380, 400, 419, 429, 437, 443
Offset: 1

Views

Author

Antti Karttunen, Apr 22 2025

Keywords

Crossrefs

Positions of terms larger than one in A265576 and in A383284.
Cf. A064413.
Cf. A064423 (after its initial 1 is a subsequence of this sequence), A383295 (conjectured subsequence).

A305294 Prime shift towards smaller primes, conjugated by the EKG-permutation: a(n) = A064664(A064989(A064413(n))).

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 2, 1, 5, 5, 4, 3, 10, 10, 9, 2, 1, 5, 14, 14, 13, 8, 4, 6, 11, 10, 20, 20, 19, 3, 1, 28, 28, 27, 9, 33, 33, 32, 7, 5, 14, 37, 37, 36, 2, 6, 20, 8, 10, 24, 18, 4, 15, 21, 11, 43, 43, 42, 13, 57, 57, 56, 3, 1, 28, 61, 61, 60, 12, 19, 33, 5, 67, 67, 66, 17, 9, 25, 14, 74, 74, 73, 7, 29, 34, 6, 37, 81, 81, 80, 2
Offset: 1

Views

Author

Antti Karttunen, May 31 2018

Keywords

Crossrefs

Formula

a(n) = A064664(A064989(A064413(n))).
For all n >= 1, a(A305293(n)) = n.
For all n >= 2, a(A064423(n)) = a(A064955(n)) = A064955(n-1).
For all n >= 3, a(1+A064955(n)) = A064423(n-1).

A383284 Lexicographically earliest infinite sequence such that a(i) = a(j) => A265576(i) = A265576(j), for all i, j >= 1, where A265576 is the LCM-transform of EKG-sequence.

Original entry on oeis.org

1, 2, 2, 3, 1, 3, 1, 2, 4, 1, 1, 1, 5, 1, 1, 1, 2, 1, 6, 1, 1, 3, 1, 4, 1, 1, 7, 1, 1, 1, 2, 8, 1, 1, 1, 9, 1, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 11, 1, 1, 1, 12, 1, 1, 1, 2, 1, 13, 1, 1, 1, 1, 1, 1, 14, 1, 1, 3, 1, 1, 1, 15, 1, 1, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17
Offset: 1

Views

Author

Antti Karttunen, Apr 22 2025

Keywords

Comments

Restricted growth sequence transform of A265576.

Crossrefs

Cf. A000720, A064413, A265576, A383285 (positions of terms > 1).
Positions of records: {2} U A064423.

Programs

  • PARI
    up_to = 100000;
    LCMtransform(v) = { my(len = length(v), b = vector(len), g = vector(len)); b[1] = g[1] = 1; for(n=2, len, g[n] = lcm(g[n-1], v[n]); b[n] = g[n]/g[n-1]); (b); };
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    v064413 = readvec("b064413_huge_to.txt"); \\ From b-file of A064413 computed previously.
    A064413(n) = v064413[n];
    v383284 = rgs_transform(LCMtransform(vector(up_to, i, A064413(i))));
    A383284(n) = v383284[n];

Formula

a(n) = 1+A000720(A265576(n)). [Conjectured. True if there are no composites in A265576]
Showing 1-7 of 7 results.