cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A064511 Ramanujan's function F_5(q).

Original entry on oeis.org

1, 10, 0, 0, -30, 30, -20, 0, 0, 70, -20, 120, 0, 0, -60, 40, -110, 0, 0, 200, -90, 120, 0, 0, -100, 130, -120, 0, 0, 300, -60, 320, 0, 0, -160, 120, -210, 0, 0, 240, -100, 420, 0, 0, -360, 210, -220, 0, 0, 430, -120, 320, 0, 0, -200, 360, -300, 0, 0, 600, -120, 620
Offset: 0

Views

Author

N. J. A. Sloane, Oct 06 2001

Keywords

Examples

			G.f. = 1 + 10*q - 30*q^4 + 30*q^5 - 20*q^6 + 70*q^9 - 20*q^10 + 120*q^11 - 60*q^14 + ...
		

Crossrefs

See A000122 for F_2, A004016 for F_3, A004013 for F_4, A064511 (this sequence) for F_5, A064512 for F_7.

Programs

  • Mathematica
    f[q_] := Sum[(-1)^k*q^(k*(3*k - 1)/2), {k, - Infinity, Infinity}];
    CoefficientList[Series[f[-q]^5/f[-q^5] + 5*q*f[-q^5]^5/f[-q], {q, 0, 70}], q] (* G. C. Greubel, May 29 2019 *)

Formula

subs(q=-q, f)^5/subs(q=-q^5, f)+5*q*subs(q=-q^5, f)^5/subs(q=-q, f), where f = A010815 = Sum_{k=-infinity, infinity} (-1)^k*q^(k*(3*k-1)/2).
Showing 1-1 of 1 results.