A064574 Number of partitions of n into parts which are all powers of the same composite.
0, 0, 0, 1, 1, 2, 2, 4, 5, 6, 6, 9, 9, 10, 11, 15, 15, 18, 18, 22, 23, 24, 24, 30, 31, 32, 34, 38, 38, 42, 42, 48, 49, 50, 51, 60, 60, 61, 62, 69, 69, 74, 74, 79, 82, 83, 83, 94, 95, 98, 99, 105, 105, 111, 112, 120, 121, 122, 122, 134, 134, 135, 138, 149, 150, 155, 155
Offset: 1
Examples
a(8)=4: 8^1, 6^1+2*6^0, 2*4^1, 4^1+4*2^0
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
Programs
-
PARI
first(n)={Vec(sum(k=2, n, if(!isprime(k), 1/prod(r=0, logint(n,k), 1-x^(k^r) + O(x*x^n)) - 1/(1-x), 0)), -n)} \\ Andrew Howroyd, Dec 29 2017
Formula
G.f.: Sum_{k>=1} 1/(Product_{r>=0} 1-x^(A002808(k)^r)) - 1/(1-x). - Andrew Howroyd, Dec 29 2017
Extensions
Name clarified by Andrew Howroyd, Dec 29 2017
Comments