A064614 Exchange 2 and 3 in the prime factorization of n.
1, 3, 2, 9, 5, 6, 7, 27, 4, 15, 11, 18, 13, 21, 10, 81, 17, 12, 19, 45, 14, 33, 23, 54, 25, 39, 8, 63, 29, 30, 31, 243, 22, 51, 35, 36, 37, 57, 26, 135, 41, 42, 43, 99, 20, 69, 47, 162, 49, 75, 34, 117, 53, 24, 55, 189, 38, 87, 59, 90, 61, 93, 28, 729, 65, 66, 67, 153, 46
Offset: 1
Examples
a(15) = a(3*5) = a(3)*a(5) = 2*5 = 10; a(16) = a(2^4) = a(2)^4 = 3^4 = 81; a(17) = 17; a(18) = a(2*3^2) = a(2)*a(3^2) = 3*a(3)^2 = 3*2^2 = 12.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- A. B. Frizell, Certain non-enumerable sets of infinite permutations, Bull. Amer. Math. Soc. 21, No. 10 (1915), 495-499.
- Index entries for sequences that are permutations of the natural numbers.
- Index to divisibility sequences.
Programs
-
Haskell
a064614 1 = 1 a064614 n = product $ map f $ a027746_row n where f 2 = 3; f 3 = 2; f p = p -- Reinhard Zumkeller, Apr 09 2012, Jan 03 2011
-
Mathematica
a[n_] := Times @@ Power @@@ (FactorInteger[n] /. {2, e2_} -> {0, e2} /. {3, e3_} -> {2, e3} /. {0, e2_} -> {3, e2}); Table[a[n], {n, 1, 69}] (* Jean-François Alcover, Nov 20 2012 *) a[n_] := n * Times @@ ({3/2, 2/3}^IntegerExponent[n, {2, 3}]); Array[a, 100] (* Amiram Eldar, Sep 20 2020 *)
-
PARI
a(n)=my(x=valuation(n, 2)-valuation(n, 3)); n*2^-x*3^x \\ Charles R Greathouse IV, Jun 28 2015
-
Python
from operator import mul from functools import reduce from sympy import factorint def A064614(n): return reduce(mul,((5-p if 2<=p<=3 else p)**e for p,e in factorint(n).items())) if n > 1 else n # Chai Wah Wu, Dec 27 2014
Formula
Completely multiplicative with a(2) = 3, a(3) = 2, and a(p) = p for primes p > 3. - Charles R Greathouse IV, Jun 28 2015
Sum_{k=1..n} a(k) ~ (6/7) * n^2. - Amiram Eldar, Oct 28 2022
Dirichlet g.f.: zeta(s-1)*((2^s-2)*(3^s-3))/((2^s-3)*(3^s-2)). - Amiram Eldar, Dec 30 2022
Comments