A064645 Table where the entry (n,k) (n >= 0, k >= 0) gives number of Motzkin paths of the length n with the minimum peak width of k.
1, 1, 1, 2, 1, 1, 4, 1, 1, 1, 9, 2, 1, 1, 1, 21, 4, 1, 1, 1, 1, 51, 8, 2, 1, 1, 1, 1, 127, 17, 4, 1, 1, 1, 1, 1, 323, 37, 8, 2, 1, 1, 1, 1, 1, 835, 82, 16, 4, 1, 1, 1, 1, 1, 1, 2188, 185, 33, 8, 2, 1, 1, 1, 1, 1, 1, 5798, 423, 69, 16, 4, 1, 1, 1, 1, 1, 1, 1, 15511, 978, 146, 32, 8, 2, 1, 1, 1, 1, 1, 1, 1, 41835, 2283, 312, 65, 16, 4, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0
Examples
E.g., we have the following nine Motzkin paths of length 4, of which the last 4 have each peak at least of width 1 and the last 2 with each peak at least 2 dashes wide, so M(4,0) = 9, M(4,1) = 4 and M(4,2) = 2. /\ _ _ __ / \ /\/\ __/\ _/\_ /\__ / \_ _/ \ / \ ____ The array starts: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 4 2 1 1 1 1 1 1 1 1 1 9 4 2 1 1 1 1 1 1 1 1 21 8 4 2 1 1 1 1 1 1 1 51 17 8 4 2 1 1 1 1 1 1 127 37 16 8 4 2 1 1 1 1 1 323 82 33 16 8 4 2 1 1 1 1 835 185 69 32 16 8 4 2 1 1 1 2188 423 146 65 32 16 8 4 2 1 1 5798 978 312 133 64 32 16 8 4 2 1 15511 2283 673 274 129 64 32 16 8 4 2
Links
Crossrefs
Programs
-
Maple
# trinv() given in A054425 [seq(A064645(j),j=0..104)]; A064645 := (n) -> Mpw((((trinv(n)-1)*(((1/2)*trinv(n))+1))-n), (n-((trinv(n)*(trinv(n)-1))/2))); C := (n,k) -> `if`((n <= 0),0,binomial(n,k)); Mpw := proc(n,m) local i,k; 1+add(add(A001263(i,k)*C(n-(m*k),2*i),k=1..i),i=0..floor(n/2)); end;
-
Mathematica
trinv[n_] := Floor[(1 + Sqrt[8 n + 1])/2]; CC[n_, k_] := If[n <= 0, 0, Binomial[n, k]]; a[n_] := Mpw[(((trinv[n] - 1)*(((1/2) trinv[n]) + 1)) - n), (n - ((trinv[n] (trinv[n] - 1))/2))]; Mpw[n_, m_] := 1 + Sum[Sum[If[k == 0, 0, Binomial[i - 1, k - 1] Binomial[i, k - 1]/k] CC[n - m*k, 2i], {k, 1, i}], {i, 0, n/2}]; Table[a[n], {n, 0, 104}] (* Jean-François Alcover, Mar 06 2016, adapted from Maple *)