cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064645 Table where the entry (n,k) (n >= 0, k >= 0) gives number of Motzkin paths of the length n with the minimum peak width of k.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 4, 1, 1, 1, 9, 2, 1, 1, 1, 21, 4, 1, 1, 1, 1, 51, 8, 2, 1, 1, 1, 1, 127, 17, 4, 1, 1, 1, 1, 1, 323, 37, 8, 2, 1, 1, 1, 1, 1, 835, 82, 16, 4, 1, 1, 1, 1, 1, 1, 2188, 185, 33, 8, 2, 1, 1, 1, 1, 1, 1, 5798, 423, 69, 16, 4, 1, 1, 1, 1, 1, 1, 1, 15511, 978, 146, 32, 8, 2, 1, 1, 1, 1, 1, 1, 1, 41835, 2283, 312, 65, 16, 4, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Antti Karttunen, Oct 03 2001

Keywords

Examples

			E.g., we have the following nine Motzkin paths of length 4, of which the last 4 have each peak at least of width 1 and the last 2 with each peak at least 2 dashes wide, so M(4,0) = 9, M(4,1) = 4 and M(4,2) = 2.
   /\                                 _       _     __
  /  \   /\/\   __/\   _/\_   /\__   / \_   _/ \   /  \   ____
The array starts:
      1    1   1   1   1   1   1   1   1   1   1
      1    1   1   1   1   1   1   1   1   1   1
      2    1   1   1   1   1   1   1   1   1   1
      4    2   1   1   1   1   1   1   1   1   1
      9    4   2   1   1   1   1   1   1   1   1
     21    8   4   2   1   1   1   1   1   1   1
     51   17   8   4   2   1   1   1   1   1   1
    127   37  16   8   4   2   1   1   1   1   1
    323   82  33  16   8   4   2   1   1   1   1
    835  185  69  32  16   8   4   2   1   1   1
   2188  423 146  65  32  16   8   4   2   1   1
   5798  978 312 133  64  32  16   8   4   2   1
  15511 2283 673 274 129  64  32  16   8   4   2
		

Crossrefs

Column k=0: Motzkin numbers (A001006), column k=1: A004148, column k=2: A004149, column k=3: A023421, column k=4: A023422, column k=5: A023423. Uses the table A001263(n, k).

Programs

  • Maple
    # trinv() given in A054425
    [seq(A064645(j),j=0..104)]; A064645 := (n) -> Mpw((((trinv(n)-1)*(((1/2)*trinv(n))+1))-n), (n-((trinv(n)*(trinv(n)-1))/2)));
    C := (n,k) -> `if`((n <= 0),0,binomial(n,k));
    Mpw := proc(n,m) local i,k; 1+add(add(A001263(i,k)*C(n-(m*k),2*i),k=1..i),i=0..floor(n/2)); end;
  • Mathematica
    trinv[n_] := Floor[(1 + Sqrt[8 n + 1])/2];
    CC[n_, k_] := If[n <= 0, 0, Binomial[n, k]];
    a[n_] := Mpw[(((trinv[n] - 1)*(((1/2) trinv[n]) + 1)) - n), (n - ((trinv[n] (trinv[n] - 1))/2))];
    Mpw[n_, m_] := 1 + Sum[Sum[If[k == 0, 0, Binomial[i - 1, k - 1] Binomial[i, k - 1]/k] CC[n - m*k, 2i], {k, 1, i}], {i, 0, n/2}];
    Table[a[n], {n, 0, 104}] (* Jean-François Alcover, Mar 06 2016, adapted from Maple *)