cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A227890 Primes of the form prime(k)^2 - k.

Original entry on oeis.org

3, 7, 163, 353, 5021, 12739, 32719, 49681, 52391, 78901, 113501, 252913, 361091, 452807, 551917, 993841, 1559797, 1956979, 2193127, 3463037, 4067983, 5003837, 5138953, 6115363, 6723271, 7251857, 7447043, 7578607, 8426989, 9479801, 11295847, 12186593, 12439237
Offset: 1

Views

Author

K. D. Bajpai, Oct 26 2013

Keywords

Examples

			a(3)= 163: prime(6)^2 - 6= 13^2 - 6= 169 - 6= 163 which is prime.
a(4)= 353: prime(8)^2 - 8= 19^2 - 8= 361 - 8= 353 which is prime.
		

Crossrefs

Cf. A000040 (prime numbers).
Cf. A064713 (for the integers k).
Cf. A184935 (primes: k^2 + prime(k)).
Cf. A188831 (primes: k^2 - prime(k)).
Cf. A229203 (primes: k^3 - prime(k)).

Programs

  • Maple
    with(numtheory):KD := proc() local a; a:= (ithprime(k)^2-k); if isprime(a) then RETURN (a); fi; end: seq(KD(), k=1..1000);
  • Mathematica
    Select[Table[Prime[k]^2-k,{k,1000}],PrimeQ]
  • PARI
    for(k=1, 10^5, if(ispseudoprime(KD=((prime(k)^2-k))), print1(KD", ")));
Showing 1-1 of 1 results.