cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064730 Numbers whose sum of nonunitary divisors and sum of unitary divisors are both positive squares.

Original entry on oeis.org

15012, 124956, 128412, 135972, 186732, 219520, 241812, 377892, 414180, 420660, 447876, 453060, 453492, 497772, 504036, 515052, 523044, 528876, 544212, 658560, 776412, 826956, 1009792, 1020060, 1135836, 1191132, 1425060, 1467180, 1511892
Offset: 1

Views

Author

Jason Earls, Oct 17 2001

Keywords

Crossrefs

Programs

  • Mathematica
    sqQ[n_] := IntegerQ[Sqrt[n]]; f1[p_, e_] := p^e + 1; f2[p_, e_] := (p^(e+1)-1)/(p-1); q[n_] := Module[{fct = FactorInteger[n], u}, If[AllTrue[fct[[;; , 2]], # == 1 &], False, u = Times @@ f1 @@@ fct; sqQ[u] && sqQ[Times @@ f2 @@@ fct - u]]]; Select[Range[10^6], q] (* Amiram Eldar, Jul 27 2024 *)
  • PARI
    {usigma(n, s=1, fac, i) = fac=factor(n); for(i=1,matsize(fac)[1],s=s*(1+fac[i,1]^fac[i,2])); return(s); } nu(n) = sigma(n)-usigma(n); for(n=1,10^8, if(nu(n)>0 && issquare(nu(n)) && issquare(usigma(n)), print1(n,",")))
    
  • PARI
    usigma(n)= { local(f,s=1); f=factor(n); for(i=1, matsize(f)[1], s*=1 + f[i, 1]^f[i, 2]); return(s) }
    { n=0; for (m = 1, 10^9, u=usigma(m); nu=sigma(m) - u; if (nu>0 && issquare(nu) && issquare(u), write("b064730.txt", n++, " ", m); if (n==750, break)) ) } \\ Harry J. Smith, Sep 24 2009
    
  • PARI
    is(n) = {my(f = factor(n), u); if(issquarefree(f), 0, u = prod(k=1, #f~, f[k, 1]^f[k, 2]+1); issquare(u) && issquare(sigma(f) - u));} \\ Amiram Eldar, Jul 27 2024