A064766 Fill up an infinite triangular array by rows by successively writing numbers 1, then 1 up to 2*3/2, then 1 up to 3*4/2, then 1 up to 4*5/2 and so on, at the k-th step writing the numbers from 1 up to the k-th triangular number. The final elements of the rows of this infinite triangle form the sequence.
1, 2, 2, 6, 5, 1, 8, 1, 10, 20, 10, 22, 7, 21, 36, 16, 33, 6, 25, 45, 11, 33, 56, 14, 39, 65, 14, 42, 71, 10, 41, 73, 1, 35, 70, 106, 23, 61, 100, 4, 45, 87, 130, 21, 66, 112, 159, 36, 85, 135, 186, 48, 101, 155, 210, 56, 113, 171, 230, 59, 120, 182, 245, 56, 121, 187
Offset: 0
Examples
The first few stages in the construction of the triangular array are: 1 then ..1 .1.2. 3 then ...1 ..1.2 .3.1.2 3.4.5.6 then .....1 ....1.2 ...3.1.2 ..3.4.5.6 .1.2.3.4.5 6.7.8.9.10. The right-most diagonal forms the sequence: 1,2,2,6,5,...
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Mathematica
With[{nn=75},TakeList[Flatten[Range[1,#]&/@Accumulate[Range[nn]]],Range[nn]][[;;,-1]]] (* Harvey P. Dale, Oct 31 2024 *)
Extensions
Edtied by N. J. A. Sloane, Oct 31 2024
Comments