A071960 Largest k >= 0 such that Product_{i=0..k} (n+i) divides n!.
0, 0, 0, 0, 1, 0, 3, 2, 1, 0, 1, 0, 3, 2, 1, 0, 1, 0, 3, 2, 1, 0, 5, 4, 3, 2, 1, 0, 1, 0, 5, 4, 3, 2, 1, 0, 3, 2, 1, 0, 1, 0, 3, 2, 1, 0, 5, 4, 3, 2, 1, 0, 5, 4, 3, 2, 1, 0, 1, 0, 5, 4, 3, 2, 1, 0, 3, 2, 1, 0, 1, 0, 5, 4, 3, 2, 1, 0, 3, 2, 1, 0, 5, 4, 3, 2, 1, 0, 7, 6, 5, 4, 3, 2, 1, 0, 3, 2, 1, 0, 1, 0, 3, 2, 1
Offset: 1
Examples
7*8*9*10 divides 7! hence a(7) = 3.
Links
- Jinyuan Wang, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A064778.
Programs
-
PARI
for(n=1,150,s=0; while(sum(i=1,s,n!%(n+i))==0,s++); print1(s-1,","))
Formula
a(n) = A064778(n) - n.
Comments