cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064861 Triangle of Sulanke numbers: T(n,k) = T(n,k-1) + a(n-1,k) for n+k even and a(n,k) = a(n,k-1) + 2*a(n-1,k) for n+k odd.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 1, 5, 8, 4, 1, 6, 13, 12, 4, 1, 8, 25, 38, 28, 8, 1, 9, 33, 63, 66, 36, 8, 1, 11, 51, 129, 192, 168, 80, 16, 1, 12, 62, 180, 321, 360, 248, 96, 16, 1, 14, 86, 304, 681, 1002, 968, 592, 208, 32, 1, 15, 100, 390, 985, 1683, 1970, 1560, 800, 240, 32, 1, 17
Offset: 0

Views

Author

Barbara Haas Margolius (b.margolius(AT)csuohio.edu), Oct 10 2001

Keywords

Comments

When A064861 is regarded as a triangle read by rows, this is [1,0,-1,0,0,0,0,0,0,...] DELTA [2,-1,-1,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 14 2008

Examples

			Table begins:
  1,  1,  1,   1,   1,  1,  1, 1, ...
  2,  3,  5,   6,   8,  9, 11, ...
  2,  8, 13,  25,  33, 51, ...
  4, 12, 38,  63, 129, ...
  4, 28, 66, 192, ...
		

Crossrefs

Cf. central Delannoy numbers a(n,n) = A001850(n), Delannoy numbers (same main diagonal): a(n,n) = A008288(n,n), a(n-1,n)=A002003(n), a(n,n+1)=A002002(n), a(n,1)=A058582(n), apparently a(n,n+2)=A050151(n).

Programs

  • Haskell
    a064861 n k = a064861_tabl !! n !! k
    a064861_row n = a064861_tabl !! n
    a064861_tabl = map fst $ iterate f ([1], 2) where
    f (xs, z) = (zipWith (+) ([0] ++ map (* z) xs) (xs ++ [0]), 3 - z)
    -- Reinhard Zumkeller, May 01 2014
  • Maple
    A064861 := proc(n,k) option remember; if n = 1 then 1; elif k = 0 then 0; else procname(n,k-1)+(3/2-1/2*(-1)^(n+k))*procname(n-1,k); fi; end;
    seq(seq(A064861(i,j-i),i=1..j-1),j=1..19);
  • Mathematica
    max = 12; se = Series[(1 + 2*x + y*x)/(1 - 2*x^2 - y^2*x^2 - 3*y*x^2), {x, 0, max}, {y, 0, max}]; cc = CoefficientList[se, {x, y}]; Flatten[ Table[ cc[[n, k]], {n, 1, max}, {k, n, 1, -1}]] (* Jean-François Alcover, Oct 21 2011, after g.f. *)
  • PARI
    a(n,m)=if(n<0 || m<0,0,polcoeff(polcoeff((1+2*x+y*x)/(1-2*x^2-y^2*x^2-3*y*x^2)+O(x^(n+m+1)),n+m),m))
    

Formula

G.f.: Sum_{m>=0} Sum_{n>=0} a_{m, n}*t^m*s^n = A(t,s) = (1+2*t+s)/(1-2*t^2-s^2-3*s*t).