A064865 Fill a triangular array by rows by writing numbers 1, then 1 up to 2^2, then 1 up to 3^2, then 1 up to 4^2 and so on. The final elements of the rows form the sequence.
1, 2, 1, 5, 1, 7, 14, 6, 15, 25, 11, 23, 36, 14, 29, 45, 13, 31, 50, 6, 27, 49, 72, 15, 40, 66, 93, 21, 50, 80, 111, 22, 55, 89, 124, 16, 53, 91, 130, 1, 42, 84, 127, 171, 20, 66, 113, 161, 210, 35, 86, 138, 191, 245, 44, 100, 157, 215, 274, 45, 106, 168, 231, 295, 36
Offset: 1
Examples
The triangle begins: ....1 ...1.2 ..3.4.1 .2.3.4.5 6.7.8.9.1
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
a = {}; Do[a = Append[a, Table[i, {i, 1, n^2} ]], {n, 1, 100} ]; a = Flatten[a]; Do[Print[a[[n(n + 1)/2]]], {n, 1, 100} ] With[{nn=20},TakeList[Flatten[Table[Range[n^2],{n,nn}]],Range[Floor[ (Sqrt[8*nn^3+12*nn^2+4*nn+3]/Sqrt[3]-1)/2]]]][[All,-1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 04 2020 *)
-
Python
from sympy import integer_nthroot def A064865(n): return 1+(k:=(n*(n+1)>>1)-1)-(r:=(m:=integer_nthroot(3*k, 3)[0])-(6*k
Chai Wah Wu, Nov 05 2024
Formula
a(n) = n(n+1)/2 - max_{p(m) < n(n+1)/2} p(m), where p(m) = m(m+1)(2m+1)/6. - Franklin T. Adams-Watters, Sep 11 2006
Extensions
More terms from Robert G. Wilson v, Oct 10 2001
Comments