A064871 The minimal number which has multiplicative persistence 7 in base n.
1409794, 68889, 38200, 17902874277, 1494, 2532, 19526, 15838, 1101, 15820, 943, 2674, 2118, 3275, 412, 3310, 1593, 440, 478, 2036, 456, 713, 738, 633, 658, 705, 907, 643, 803, 641, 653, 797, 484, 991, 814, 877, 1079, 767, 840, 575, 930, 843, 710, 880
Offset: 9
Examples
a(9) = 1409794 because the persistence of 1409794 is 7.
Links
- M. R. Diamond and D. D. Reidpath, A counterexample to a conjecture of Sloane and Erdos, J. Recreational Math., 1998 29(2), 89-92.
- Sascha Kurz, Persistence in different bases
- T. Lamont-Smith, Multiplicative Persistence and Absolute Multiplicative Persistence, J. Int. Seq., Vol. 24 (2021), Article 21.6.7.
- C. Rivera, Minimal prime with persistence p
- N. J. A. Sloane, The persistence of a number, J. Recreational Math., 6 (1973), 97-98.
- Eric Weisstein's World of Mathematics, Multiplicative Persistence
- Index entries for linear recurrences with constant coefficients, order 5041.
Formula
a(n) = 8*n-[n/5040] for n > 5039.
Extensions
Corrected by R. J. Mathar, Nov 02 2007
Comments