A064872 The minimal number which has multiplicative persistence 8 in base n.
7577, 130883, 596667, 3644381, 2820, 61773, 2752, 5136, 7452, 38631, 2780, 8015, 2996, 542, 8611, 4591, 575, 10586, 2532, 2681, 2764, 1016, 4547, 10151, 1065, 983, 813, 5431, 900, 1255, 983, 5179, 5117, 1190, 982, 1129, 1501, 1491, 1471, 1084
Offset: 13
Examples
a(13) = 7577 because 7577 is the fewest number with persistence 8 in base 13.
Links
- M. R. Diamond and D. D. Reidpath, A counterexample to a conjecture of Sloane and Erdos, J. Recreational Math., 1998 29(2), 89-92.
- Sascha Kurz, Persistence in different bases
- T. Lamont-Smith, Multiplicative Persistence and Absolute Multiplicative Persistence, J. Int. Seq., Vol. 24 (2021), Article 21.6.7.
- C. Rivera, Minimal prime with persistence p
- N. J. A. Sloane, The persistence of a number, J. Recreational Math., 6 (1973), 97-98.
- Eric Weisstein's World of Mathematics, Multiplicative Persistence
- Index entries for linear recurrences with constant coefficients, order 40321.
Formula
a(n) = 9*n-[n/40320] for n > 40319.
Comments