cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A064873 First of four sequences representing the lexicographical minimal decomposition of n in 4 squares: n = a(n)^2 + A064874(n)^2 + A064875(n)^2 + A064876(n)^2.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 10 2001

Keywords

Comments

A072401(n) = A057427(a(n)).
For k<112: a(n)=A072401(n), but A072401(112) = 1<>a(112)=2, as also A072401(112 - 1) = 1.

Examples

			a(25) = 0: 25 = a(25)^2 + A064874(25)^2 + A064875(25)^2 + A064876(25)^2 = 0 + 0 + 0 + 25 and the other decompositions (0, 0, 3, 4) and (1, 2, 2, 4) are greater than (0, 0, 0, 5).
		

Crossrefs

A064876 Last of four sequences representing the lexicographical minimal decomposition of n in 4 squares: n = A064873(n)^2 + A064874(n)^2 + A064875(n)^2 + a(n)^2.

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 4, 4, 3, 3, 4, 4, 3, 3, 4, 5, 5, 5, 5, 5, 5, 5, 4, 4, 5, 5, 6, 6, 6, 6, 6, 5, 5, 5, 6, 6, 6, 6, 4, 7, 7, 7, 6, 7, 7, 7, 6, 7, 7, 7, 7, 6, 6, 6, 8, 8, 8, 7, 8, 8, 6, 6, 6, 8, 7, 7, 6, 8, 7, 7, 8, 9, 9, 9, 8, 9, 9, 9, 6, 8, 9, 9, 9, 8, 9, 9, 8, 9, 7, 7, 10, 10, 10
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 10 2001

Keywords

Examples

			a(18) = 3: 18 = A064873(18)^2 + A064874(18)^2 + A064875(18)^2 + a(18)^2 = 0 + 0 + 9 + 9 and the other decompositions (0, 1, 1, 4) and (1, 2, 2, 3) are greater than (0, 0, 3, 3).
		

Crossrefs

A064875 Third of four sequences representing the lexicographical minimal decomposition of n in four squares: n = A064873(n)^2 + A064874(n)^2 + a(n)^2 + A064876(n)^2.

Original entry on oeis.org

0, 0, 1, 1, 0, 1, 1, 1, 2, 0, 1, 1, 2, 2, 2, 2, 0, 1, 3, 3, 2, 2, 3, 3, 2, 0, 1, 1, 1, 2, 2, 2, 4, 4, 3, 3, 0, 1, 1, 1, 2, 4, 4, 3, 2, 3, 3, 3, 4, 0, 1, 1, 4, 2, 2, 2, 4, 2, 3, 3, 3, 5, 5, 5, 0, 1, 1, 3, 2, 2, 5, 5, 6, 3, 5, 5, 6, 3, 5, 5, 4, 0, 1, 1, 4, 2, 2, 2, 6, 5, 3, 3, 3, 5, 3, 3, 4, 4, 7, 7, 0, 1, 1, 1, 2
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 10 2001

Keywords

Examples

			a(19) = 3: 19 = A064873(19)^2 + A064874(19)^2 + a(19)^2 + A064876(19)^2 = 0 + 1 + 9 + 9 and the other decomposition (1, 1, 1, 4) is greater than (0, 1, 3, 3).
		

Crossrefs

A064877 a(n) = n - (A064873(n) + A064874(n) + A064875(n) + A064876(n)).

Original entry on oeis.org

0, 0, 0, 0, 2, 2, 2, 2, 4, 6, 6, 6, 6, 8, 8, 8, 12, 12, 12, 12, 14, 14, 14, 14, 16, 20, 20, 20, 20, 22, 22, 22, 24, 24, 26, 26, 30, 30, 30, 30, 32, 32, 32, 32, 34, 36, 36, 36, 36, 42, 42, 42, 42, 44, 44, 44, 44, 46, 48, 48, 48, 50, 50, 50, 56, 56, 56, 54, 58, 58, 56, 56, 60, 62
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 10 2001

Keywords

Crossrefs

A375202 a(n) is the least integer x >= 0 such that n = x^2 + y^2 + z^2 for some integers y, z, or -1 if there is no such x.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 1, -1, 0, 0, 0, 1, 2, 0, 1, -1, 0, 0, 0, 1, 0, 1, 2, -1, 2, 0, 0, 1, -1, 0, 1, -1, 0, 1, 0, 1, 0, 0, 1, -1, 0, 0, 1, 3, 2, 0, 1, -1, 4, 0, 0, 1, 0, 0, 1, -1, 2, 2, 0, 1, -1, 0, 1, -1, 0, 0, 1, 3, 0, 1, 3, -1, 0, 0, 0, 1, 2, 2, 2, -1, 0, 0, 0, 1, 2, 0, 1, -1, 4, 0, 0, 1, -1, 2, 2
Offset: 0

Views

Author

Robert Israel, Oct 15 2024

Keywords

Examples

			a(12) = 2 because 12 = 2^2 + 2^2 + 2^2 but there are no integer solutions to 12 = 0^2 + y^2 + z^2 or 12 = 1^2 + y^2 + z^2.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local q,x,y,z;
      if n/4^padic:-ordp(n,4) mod 8 = 7 then return -1 fi;
      for x from 0 while 3*x^2 <= n do
        if [isolve(y^2 + z^2 = n - x^2)] <> [] then return x fi
      od;
    end proc;
    map(f, [$0..100]);
  • Python
    from math import isqrt
    from sympy import factorint
    def A375202(n):
        v = (~n & n-1).bit_length()
        if v&1^1 and n>>v&7==7: return -1
        for x in range(isqrt(n//3)+1):
            if not any(e&1 and p&3==3 for p, e in factorint(n-x**2).items()):
                return x # Chai Wah Wu, Oct 16 2024

Formula

a(n) = A064874(n) if a(n) >= 0.
If a(n) = -1 then a(4*n) = -1, otherwise a(4*n) = 2*a(n).
Showing 1-5 of 5 results.