A064873 First of four sequences representing the lexicographical minimal decomposition of n in 4 squares: n = a(n)^2 + A064874(n)^2 + A064875(n)^2 + A064876(n)^2.
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0
Offset: 0
Keywords
Examples
a(25) = 0: 25 = a(25)^2 + A064874(25)^2 + A064875(25)^2 + A064876(25)^2 = 0 + 0 + 0 + 25 and the other decompositions (0, 0, 3, 4) and (1, 2, 2, 4) are greater than (0, 0, 0, 5).
Links
- Eric Weisstein's World of Mathematics, Square Numbers.
- Index entries for sequences related to sums of squares.
Comments