cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064881 Eisenstein array Ei(1,2).

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 4, 3, 5, 2, 1, 5, 4, 7, 3, 8, 5, 7, 2, 1, 6, 5, 9, 4, 11, 7, 10, 3, 11, 8, 13, 5, 12, 7, 9, 2, 1, 7, 6, 11, 5, 14, 9, 13, 4, 15, 11, 18, 7, 17, 10, 13, 3, 14, 11, 19, 8, 21, 13, 18, 5, 17, 12, 19, 7, 16, 9, 11, 2
Offset: 1

Views

Author

Wolfdieter Lang, Oct 19 2001

Keywords

Comments

In Eisenstein's notation this is the array for m=1 and n=2; see example in given reference p. 42. The array for m=n=1 is A049456.
For n >= 1, the number of entries of row n is 2^(n-1)+1 with the difference sequence [2,1,2,4,8,16,...]. Row sums give 3*A007051(n-1).
The binary tree built from the rationals a(n,m)/a(n,m+1), m=0..2^(n-1), for each row n >= 1 gives the subtree of the (Eisenstein-)Stern-Brocot tree in the version of, e.g., Calkin and Wilf (for the reference see A002487 and the link) with root 1/2. The composition rule for this tree is i/j -> i/(i+j), (i+j)/j.

Examples

			{1,2};
{1,3,2};
{1,4,3,5,2};
{1,5,4,7,3,8,5,7,2}; ...
This binary subtree of rationals is built from
1/2;
1/3, 3/2;
1/4, 4/3, 3/5, 5/2; ...
		

Programs

  • Mathematica
    nmax = 6; a[n_, m_?EvenQ] := a[n - 1, m/2]; a[n_, m_?OddQ] := a[n, m] = a[n - 1, (m - 1)/2] + a[n - 1, (m + 1)/2]; a[1, 0] = 1; a[1, 1] = 2; Flatten[ Table[a[n, m], {n, 1, nmax}, {m, 0, 2^(n - 1)}]] (* Jean-François Alcover, Sep 27 2011 *)
    eisen = Most@Flatten@Transpose[{#, # + RotateLeft[#]}] &;
    Flatten@NestList[eisen, {1, 2}, 6] (* Harlan J. Brothers, Feb 18 2015 *)

Formula

a(n, m) = a(n-1, m/2) if m is even, else a(n, m) = a(n-1, (m-1)/2) + a(n-1, (m+1)/2), a(1, 0)=1, a(1, 1)=2.