A064881 Eisenstein array Ei(1,2).
1, 2, 1, 3, 2, 1, 4, 3, 5, 2, 1, 5, 4, 7, 3, 8, 5, 7, 2, 1, 6, 5, 9, 4, 11, 7, 10, 3, 11, 8, 13, 5, 12, 7, 9, 2, 1, 7, 6, 11, 5, 14, 9, 13, 4, 15, 11, 18, 7, 17, 10, 13, 3, 14, 11, 19, 8, 21, 13, 18, 5, 17, 12, 19, 7, 16, 9, 11, 2
Offset: 1
Examples
{1,2}; {1,3,2}; {1,4,3,5,2}; {1,5,4,7,3,8,5,7,2}; ... This binary subtree of rationals is built from 1/2; 1/3, 3/2; 1/4, 4/3, 3/5, 5/2; ...
Links
- R. Backhouse, J. F. Ferreira, On Euclid’s algorithm and elementary number theory, Sci. Comput. Program. 76, No. 3, 160-180 (2011).
- N. Calkin and H. S. Wilf, Recounting the Rationals, Amer. Math. Monthly, 107 (No. 4, 2000), pp. 360-363.
- F. G. M. Eisenstein, Eine neue Gattung zahlentheoretischer Funktionen, welche von zwei Elementen abhaengen und durch gewisse lineare Funktional-Gleichungen definirt werden, Verhandlungen der Koenigl. Preuss. Akademie der Wiss. Berlin (1850) 36-42, Feb 18, 1850. Werke, II, pp. 705-711.
- Index entries for sequences related to Stern's sequences
Programs
-
Mathematica
nmax = 6; a[n_, m_?EvenQ] := a[n - 1, m/2]; a[n_, m_?OddQ] := a[n, m] = a[n - 1, (m - 1)/2] + a[n - 1, (m + 1)/2]; a[1, 0] = 1; a[1, 1] = 2; Flatten[ Table[a[n, m], {n, 1, nmax}, {m, 0, 2^(n - 1)}]] (* Jean-François Alcover, Sep 27 2011 *) eisen = Most@Flatten@Transpose[{#, # + RotateLeft[#]}] &; Flatten@NestList[eisen, {1, 2}, 6] (* Harlan J. Brothers, Feb 18 2015 *)
Formula
a(n, m) = a(n-1, m/2) if m is even, else a(n, m) = a(n-1, (m-1)/2) + a(n-1, (m+1)/2), a(1, 0)=1, a(1, 1)=2.
Comments