A065019 Let phi be the golden number {1+sqrt(5)}/2 (A001622), let phi(n) be the number phi written in base 10 but truncated to n decimal digits. Sequence gives number of 1's at the beginning of the continued fraction expansion of phi(n).
1, 3, 5, 11, 11, 13, 15, 17, 19, 21, 25, 27, 29, 31, 35, 35, 39, 41, 45, 49, 49, 51, 53, 55, 57, 61, 63, 65, 67, 69, 73, 75, 77, 81, 83, 83, 87, 91, 95, 95, 99, 99, 103, 103, 105, 107, 113, 113, 115, 117, 121, 123, 125, 129, 131, 133, 135, 137, 139, 141, 143, 147, 149
Offset: 0
Examples
phi(6)=1.618033. The continued fraction expansion of phi(6) = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 129}. Hence a(6) = 15.
Crossrefs
Cf. A001622.
Programs
-
Mathematica
gr = RealDigits[ N[ GoldenRatio, 250]] [[1]]; f[n_] := Block[ {k = 1}, While[ ContinuedFraction[ FromDigits[ {Take[ gr, n + 1 ], 1} ]] [[k]] == 1, k++ ]; k - 1]; Table[ f[n], {n, 0, 70} ]
Formula
The value of lim n -> infinity a(n)/n is log(10)/2/log(phi)=2.3924...
Extensions
Additional comments from Robert G. Wilson v, Nov 02 2001
Comments