A065040 Triangle read by rows: T(m,k) = exponent of the highest power of 2 dividing the binomial coefficient binomial(m,k).
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 1, 2, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 3, 1, 3, 2, 3, 0, 0, 0, 2, 2, 1, 1, 2, 2, 0, 0, 0, 1, 0, 3, 1, 2, 1, 3, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 2, 1, 2, 0, 3, 2, 3, 0, 2, 1, 2, 0, 0, 0, 1, 1, 0, 0, 2, 2, 0, 0, 1, 1, 0, 0
Offset: 0
Examples
Triangle begins: [0] [0, 0] [0, 1, 0] [0, 0, 0, 0] [0, 2, 1, 2, 0] [0, 0, 1, 1, 0, 0] [0, 1, 0, 2, 0, 1, 0] [0, 0, 0, 0, 0, 0, 0, 0] [0, 3, 2, 3, 1, 3, 2, 3, 0] [0, 0, 2, 2, 1, 1, 2, 2, 0, 0] [0, 1, 0, 3, 1, 2, 1, 3, 0, 1, 0] ... - _N. J. A. Sloane_, Aug 21 2021
Links
- Antti Karttunen, Table of n, a(n) for n = 0..10010; the first 141 antidiagonals, flattened
- Tyler Ball, Tom Edgar, and Daniel Juda, Dominance Orders, Generalized Binomial Coefficients, and Kummer's Theorem, Mathematics Magazine, Vol. 87, No. 2, April 2014, pp. 135-143.
Crossrefs
Programs
-
Maple
A065040 := (n, k) -> padic[ordp](binomial(n, k), 2): seq(seq(A065040(n,k), k=0..n), n=0..13); # Peter Luschny, Aug 15 2017
-
Mathematica
T[m_, k_] := IntegerExponent[Binomial[m, k], 2]; Table[T[m, k], {m, 0, 13}, {k, 0, m}] // Flatten (* Jean-François Alcover, Oct 06 2016 *)
-
PARI
T(m,k)=hammingweight(k)+hammingweight(m-k)-hammingweight(m) for(m=0,9,for(k=0,m,print1(T(m,k)", "))) \\ Charles R Greathouse IV, Mar 26 2013
Formula
As an array f(i,j) = f(j,i) = T(i+j,j) read by antidiagonals: f(0,j) = 0, f(1,j) = A007814(j+1), f(i,j) = Sum_{k=0..i-1} (f(1,j+k) - f(1,k)). [corrected by Kevin Ryde, Oct 07 2021]
The n-th term a(n) is equal to the binomial coefficient binomial(m,k), where m = floor((1+sqrt(8*n+1))/2) - 1 and k = n - m(m+1)/2. Also a(n) = g(m) - g(k) - g(m-k), where g(x) = Sum_{i=1..floor(log_2(x))} floor(x/2^i), m = floor((1+sqrt(8*n+1))/2) - 1, k = n - m(m+1)/2. - Hieronymus Fischer, May 05 2007
T(m,k) <= log_2 m, for m > 0. - Charles R Greathouse IV, Mar 26 2013
From Antti Karttunen, Oct 28 2014: (Start)
(End)
Extensions
Name clarified by Antti Karttunen, Oct 28 2014
Comments