A065049 Odd primes of incorrect parity: number of 1's in the binary representation of n (mod 2) == 1 - (n mod 3) (mod 2). Also called isolated primes.
11, 41, 43, 47, 59, 107, 131, 137, 139, 163, 167, 173, 179, 191, 227, 233, 239, 251, 277, 337, 349, 373, 419, 431, 443, 491, 521, 523, 547, 557, 563, 569, 571, 587, 617, 619, 641, 643, 647, 653, 659, 673, 677, 691, 701, 719, 739, 743, 751, 761, 809, 811
Offset: 1
Examples
47 is in the sequence because 47d = 101111b which has five 1's in its binary notation; an odd number. Also 47 == 2 (mod 3); an even number. Therefore a mismatch exists.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Chris K. Caldwell, Prime Links + +
- W. Paulsen, The Prime Maze, Fib. Quart., 40 (2002), 272-279.
- C. Rivera, Problem 25 - William Paulsen's Prime Numbers Maze
Programs
-
Maple
filter:= proc(n) convert(convert(n,base,2),`+`) + (n mod 3) mod 2 = 1 end proc: select(filter, [seq(ithprime(i),i=2..1000)]); # Robert Israel, Jun 19 2018
-
Mathematica
Select[ Range[3, 1000, 2], PrimeQ[ # ] && EvenQ[ Count[ IntegerDigits[ #, 2], 1]] == OddQ[ Mod[ #, 3]] & ]
-
PARI
isok(p) = (p>2) && isprime(p) && ((hammingweight(p) % 2) != ((p % 3) % 2)); \\ Michel Marcus, Dec 15 2018
Comments