A065079 Primes > 3 for which the alternating bit sum (A065359) is not equal to 1 or 2.
11, 41, 43, 47, 59, 107, 131, 137, 139, 163, 167, 173, 179, 191, 227, 233, 239, 251, 277, 337, 349, 373, 419, 431, 443, 491, 521, 523, 547, 557, 563, 569, 571, 587, 617, 619, 641, 643, 647, 653, 659, 673, 677, 683, 691, 701, 719, 739, 743, 751, 761, 809
Offset: 1
Examples
11 is in the sequence because 11d = 1011b, so the alternating digits sum of 11 is 1 -1 +0 -1 = -1 which is neither 1 nor 2.
References
- William Paulsen, wpaulsen(AT)csm.astate.edu, personal communication.
Links
- Harry J. Smith, Table of n, a(n) for n=1,...,1000
Crossrefs
Cf. A065049.
Programs
-
Mathematica
Do[d = Reverse[ IntegerDigits[ Prime[n], 2]]; l = Length[d]; s = 0; k = 1; While[k < l + 1, s = s - (-1)^k*d[[k]]; k++ ]; If[s != 1 && s != 2, Print[ Prime[n]]], {n, 3, 141} ]
-
PARI
baseE(x, b)= { local(d, e=0, f=1); while (x>0, d=x-b*(x\b); x\=b; e+=d*f; f*=10); return(e) } SumAD(x)= { local(a=1, s=0); while (x>9, s+=a*(x-10*(x\10)); x\=10; a=-a); return(s + a*x) } { n=0; for (m=3, 10^9, p=prime(m); s=SumAD(baseE(p, 2)); if (s!=1 && s!=2, write("b065079.txt", n++, " ", p); if (n==1000, return)) ) } \\ Harry J. Smith, Oct 06 2009
-
PARI
f(p)={s=0;u=1;for(k=0,#binary(p)-1,s+=bittest(p,k)*u;u=-u);return(s)};forprime(p=5,809,F=f(p);if((F!=1)&&(F!=2),print1(p,", "))) \\ Washington Bomfim, Jan 18 2011
Extensions
"> 3" added to definition by Harry J. Smith, Oct 06 2009
Comments