A065081 Alternating bit sum (A065359) for n-th prime p: replace 2^k with (-1)^k in binary expansion of p.
-1, 0, 2, 1, -1, 1, 2, 1, 2, 2, 1, 1, -1, -2, -1, 2, -1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, -1, 1, 2, 1, -1, -1, -2, 2, 1, 1, -2, -1, -1, -1, 1, -1, 1, 2, 1, 1, 1, -1, 1, -1, -1, 1, -1, 2, 2, 2, 1, 4, 2, 1, 2, 1, 2, 1, 2, 1, 4, 2, 4, 2, 2, 1, 4, 1, 2, 2, 1, 2, 1, -1, 1, -1, 1, 1, -1, 2, 1, 2, 1, 2, 2, 1, -1, 1, 2, 2, -1, -2, 1
Offset: 1
Examples
The sixth prime is 13d = 1101b -> -(1)+(1)-(0)+(1) = 1 = a(6)
Links
- Harry J. Smith, Table of n, a(n) for n=1..1000
- William Paulsen, wpaulsen(AT)csm.astate.edu, Partitioning the [prime] maze
Crossrefs
Cf. A065359.
Programs
-
Mathematica
f[n_] := (d = Reverse[ IntegerDigits[n, 2]]; l = Length[d]; s = 0; k = 1; While[k < l + 1, s = s - (-1)^k*d[[k]]; k++ ]; s); Table[ Prime[ f[n]], {n, 1, 100} ]
-
PARI
baseE(x, b)= { local(d, e=0, f=1); while (x>0, d=x-b*(x\b); x\=b; e+=d*f; f*=10); return(e) } SumAD(x)= { local(a=1, s=0); while (x>9, s+=a*(x-10*(x\10)); x\=10; a=-a); return(s + a*x) } { for (n=1, 1000, p=prime(n); s=SumAD(baseE(p, 2)); write("b065081.txt", n, " ", s) ) } \\ Harry J. Smith, Oct 06 2009
-
PARI
f(p)= { v=binary(p); L=#v; u=1; s=0; forstep(k=L,1,-1, if(v[k]==1,s+=u); u=-u;); return(s) }; for(n=1,100,p=prime(n); an=f(p);print1(an,", ")) \\ Washington Bomfim, Jan 16 2011
-
Python
from sympy.ntheory import digits, prime def A065081(n): return sum((0,1,-1,0)[i] for i in digits(prime(n),4)[1:]) # Chai Wah Wu, Jul 19 2024
Comments