cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065084 Smallest prime having alternating bit sum (A065359) equal to n.

Original entry on oeis.org

3, 7, 5, 0, 277, 1109, 0, 17749, 70997, 0, 1398037, 5526869, 0, 72701269, 357915989, 0, 5659514197, 22902297941, 0, 297784399189, 1465948394837, 0, 23456248042837, 89426945725781, 0, 1430831131612501, 6004798429418837, 0
Offset: 0

Views

Author

Robert G. Wilson v, Nov 09 2001

Keywords

Comments

Only 3d = 11b has an alternating sum of 0 and alternated sums of 3*k are impossible for primes.

Examples

			a(4)=277 since the smallest number having alternating bit sum n is (4^n-1)/3, which for n = 4 is 85. Because 85 =(1010101)2 is composite, the next number with alternating bit sum 4 is the prime (100010101)2 = 277. - _Washington Bomfim_, Jan 21 2011
		

Crossrefs

Programs

  • Mathematica
    f[n_] := (d = Reverse[ IntegerDigits[n, 2]]; l = Length[d]; s = 0; k = 1; While[k < l + 1, s = s - (-1)^k*d[[k]]; k++ ]; s); a = Table[ f[ Prime[n]], {n, 1, 10^6} ]; b = Table[0, {13} ];
    Do[ If[ a[[n]] > -1 && b[[a[[n]] + 1]] == 0, b[[a[[n]] + 1]] = Prime[n]], {n, 1, 10^6} ]; b
  • PARI
    M(n)={return((4^n - 1)/3 + 2^(2*n) - 2^(2*n-2))};
    T(n,k)={pow2=2^(2*n-2);k+=pow2; for(j=1,n-2,pow2/=4; k-=pow2;if(isprime(k),return(k),k+=pow2;)); return(k)};
    T2(n,k)={pow2=2; for(j=1,n, k+=pow2;if(isprime(k),return(k),k-=pow2; pow2*=4)); return(k)};
    print("0 3");print("1 7");print("2 5");print("3 0");for(n=4,127,if(n%3==0,print(n," 0"),k=M(n);if(isprime(k),print(n," ",k),k=T(n,k);if(isprime(k),print(n," ",k),k=T2(n,k);if(isprime(k),print(n," ",k),print("a(",n,") not found")))))) \\ Washington Bomfim, Jan 22 2011

Extensions

a(14)-a(27) from Washington Bomfim, Jan 21 2011