A065084 Smallest prime having alternating bit sum (A065359) equal to n.
3, 7, 5, 0, 277, 1109, 0, 17749, 70997, 0, 1398037, 5526869, 0, 72701269, 357915989, 0, 5659514197, 22902297941, 0, 297784399189, 1465948394837, 0, 23456248042837, 89426945725781, 0, 1430831131612501, 6004798429418837, 0
Offset: 0
Examples
a(4)=277 since the smallest number having alternating bit sum n is (4^n-1)/3, which for n = 4 is 85. Because 85 =(1010101)2 is composite, the next number with alternating bit sum 4 is the prime (100010101)2 = 277. - _Washington Bomfim_, Jan 21 2011
Links
- Washington Bomfim, Table of n, a(n) for n = 0..121
Programs
-
Mathematica
f[n_] := (d = Reverse[ IntegerDigits[n, 2]]; l = Length[d]; s = 0; k = 1; While[k < l + 1, s = s - (-1)^k*d[[k]]; k++ ]; s); a = Table[ f[ Prime[n]], {n, 1, 10^6} ]; b = Table[0, {13} ]; Do[ If[ a[[n]] > -1 && b[[a[[n]] + 1]] == 0, b[[a[[n]] + 1]] = Prime[n]], {n, 1, 10^6} ]; b
-
PARI
M(n)={return((4^n - 1)/3 + 2^(2*n) - 2^(2*n-2))}; T(n,k)={pow2=2^(2*n-2);k+=pow2; for(j=1,n-2,pow2/=4; k-=pow2;if(isprime(k),return(k),k+=pow2;)); return(k)}; T2(n,k)={pow2=2; for(j=1,n, k+=pow2;if(isprime(k),return(k),k-=pow2; pow2*=4)); return(k)}; print("0 3");print("1 7");print("2 5");print("3 0");for(n=4,127,if(n%3==0,print(n," 0"),k=M(n);if(isprime(k),print(n," ",k),k=T(n,k);if(isprime(k),print(n," ",k),k=T2(n,k);if(isprime(k),print(n," ",k),print("a(",n,") not found")))))) \\ Washington Bomfim, Jan 22 2011
Extensions
a(14)-a(27) from Washington Bomfim, Jan 21 2011
Comments