A065092 Primes with property that when written in base two complementing any single bit yields a composite number.
127, 173, 191, 233, 239, 251, 277, 337, 349, 373, 431, 443, 491, 557, 653, 683, 701, 733, 761, 1019, 1193, 1201, 1381, 1453, 1553, 1597, 1709, 1753, 1759, 1777, 2027, 2063, 2333, 2371, 2447, 2633, 2879, 2999, 3083, 3181, 3209, 3313, 3593, 3643, 3767, 3779, 3851
Offset: 1
Examples
127 is in the sequence because 127d becomes 1111111b. "Changing a 1 to a 0 [from right to left] yields rooms 126, 125, 123, 119, 111, 95, or 62, all of which are composite. Furthermore, adding a digit 1 to the left of this number produces, 255 = 11111111b which is also composite. However, this room is not completely isolated from the maze because one can drop in from room 383d = 101111111b." Paulsen.
Links
- T. D. Noe, Table of n, a(n) for n=1..10000
- William Paulsen, Are some rooms totally isolated? [Copy on web.archive.org, latest version as of Nov 04 2008]
- Carlos Rivera, Problem 25: William Paulsen's Prime Numbers Maze, The Prime Puzzles & Problems Connection.
- Warren D. Smith et al., Primes such that every bit matters?, on "primenumbers" Yahoo group, Apr 04 2013.
- Warren D. Smith and others, Primes such that every bit matters?, digest of 14 messages in primenumbers Yahoo group, Apr 3 - Apr 9, 2013.
- Terence Tao, A remark on primality testing and decimal expansions, arXiv:0802.3361 [math.NT], 2008-2010; Journal of the Australian Mathematical Society 91:3 (2011), pp. 405-413.
Crossrefs
Cf. A137985.
Programs
-
Maple
q:= p-> isprime(p) and not ormap(i-> isprime(Bits[Xor](p, 2^i)), [$0..ilog2(p)+1]): select(q, [$2..5000])[]; # Alois P. Heinz, Jul 28 2025
-
Mathematica
Do[d = Prepend[ IntegerDigits[ Prime[n], 2], 0]; l = Length[d]; k = 1; While[k < l && !PrimeQ[ FromDigits[ If[d[[k]] == 1, ReplacePart[d, 0, k], ReplacePart[d, 1, k]], 2]], k++ ]; If[k == l, Print[ Prime[n]]], {n, 2, 500} ]
-
PARI
f(p)= { pow2=2; v=binary(p); L=#v-1; forstep(k=L,1,-1, if(v[k]==0, x=p+pow2, x=p-pow2); if(isprime(x), return(0)); pow2*=2 ); if(isprime(p+pow2), return(0)); return(1) }; forprime(p=5,3767, if(f(p), print1(p, ", "))) \\ Washington Bomfim, Jan 16 2011
-
PARI
/* needs ver. >= 2.6 */ is_A065092(n)={!for(k=1,n,isprime(bitxor(n,k))&return;k+=k-1)&isprime(n)} \\ Note the strange behavior of the for() loop w.r.t. the upper limit. In PARI versions up to 2.4, the increment must take place at the beginning of the loop, viz "k>2 & k+=k-2" BEFORE isprime(), as to cover k=2^ceil(log[2](n)). - M. F. Hasler, Apr 05 2013
-
Python
from sympy import isprime, primerange def ok(p): # p assumed prime return not any(isprime((1<
Michael S. Branicky, Jul 26 2022
Extensions
Links fixed & added by M. F. Hasler, Apr 05 2013
Comments