A065098 Sum of reciprocals of terms in period of continued fraction for sqrt(n) is an integer.
239, 1839, 24627
Offset: 1
Examples
For n=239 the quotient periods are: [[15],[2,5,1,2,4,15,4,2,1,5,2,30]], (1/2)+(1/5)+1+(1/2)+(1/4)+(1/15)+(1/4)+(1/2)+1+(1/5)+(1/2)+(1/30) = 5.
Programs
-
Mathematica
Do[ If[ IntegerQ[ Apply[ Plus, 1/Last[ ContinuedFraction[ Sqrt[n]]]]], Print[n]], {n, 2, 10^5 } ] srcfiQ[n_]:=Module[{s=Sqrt[n]},IntegerQ[If[IntegerQ[s],1/2,Total[1/ ContinuedFraction[s][[2]]]]]]; Select[Range[25000],srcfiQ] (* Harvey P. Dale, Apr 11 2016 *)
Comments