cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065146 Numbers n such that the arithmetic, geometric and harmonic means of phi(n) and sigma(n) are all integers.

Original entry on oeis.org

1, 248, 264, 418, 477, 1485, 3080, 3135, 3596, 3828, 5396, 10098, 12648, 20026, 21318, 22152, 23374, 24882, 35074, 35343, 39105, 41656, 44660, 49938, 55154, 56536, 61344, 71145, 74613, 86304, 87087, 104931, 118296, 124605, 129504, 130356, 147560, 150195
Offset: 1

Views

Author

Labos Elemer, Oct 18 2001

Keywords

Examples

			n = 5396, phi(n) = 2520, sigma(n) = 10080, arithmetic mean = 6300, geometric mean = 5040, harmonic mean = 4032; 67 cases < 10^6.
		

Crossrefs

Programs

  • Mathematica
    Do[s = EulerPhi[n]*DivisorSigma[1, n]; z = (EulerPhi[n]+DivisorSigma[1, n])/2; u = h[n]; If[IntegerQ[Sqrt[s]]&&IntegerQ[z]&&IntegerQ[u], Print[n]], {n, 1, 1000000}]
  • PARI
    { n=0; for (m=1, 10^9, e=eulerphi(m); s=sigma(m); if (!issquare(e*s), next); h=(2*e*s)/(e + s); if (frac(h) != 0, next); if (frac((e + s)/2) != 0, next); write("b065146.txt", n++, " ", m); if (n==500, return) ) } \\ Harry J. Smith, Oct 12 2009

Formula

a = (phi(n)+sigma(n))/2, g = sqrt(phi(n)*sigma(n)), h = (2*phi(n)*sigma(n))/(phi(n)+sigma(n)) = g^2/a are all integers; phi() = A000010(), sigma() = A000203().