A065156 Numbers n such that some Lucas number (A000204) is divisible by n.
1, 2, 3, 4, 6, 7, 9, 11, 14, 18, 19, 22, 23, 27, 29, 31, 38, 41, 43, 44, 46, 47, 49, 54, 58, 59, 62, 67, 71, 76, 79, 81, 82, 83, 86, 94, 98, 101, 103, 107, 116, 118, 121, 123, 124, 127, 129, 131, 134, 139, 142, 151, 158, 161, 162, 163, 166, 167, 179, 181, 191, 199
Offset: 1
Links
- A.H.M. Smeets, Table of n, a(n) for n = 1..20000 (terms 1..1000 from T. D. Noe)
- B. Avila and T. Khovanova, Free Fibonacci Sequences, arXiv preprint arXiv:1403.4614 [math.NT], 2014 and J. Int. Seq. 17 (2014) # 14.8.5
Programs
-
Mathematica
test[ n_ ] := For[ a=1; b=3, True, t=b; b=Mod[ a+b, n ]; a=t, If[ b==0, Return[ True ] ]; If[ a==2&&b==1, Return[ False ] ] ]; Select[ Range[ 200 ], test ] Take[Flatten[Divisors/@LucasL[Range[200]]]//Union,70] (* Harvey P. Dale, Jun 07 2020 *)
-
Python
a, n = 0, 0 while n < 1000: a, f0, f1, i = a+1, 1, 2, 1 if f1%a == 0: n = n+1 print(n,a) else: while f0%a != 0 and i <= a: f0, f1, i = f0+f1, f0, i+1 if i <= a: n = n+1 print(n,a) # A.H.M. Smeets, Sep 20 2020
Formula
Equals {1,2,4} union {p^e | p in A140409 and e > 0} union {2*p^e | p in A140409 and e > 0} union {4*p | p in A053032} union {4*p*q | p, q in A053032}. - A.H.M. Smeets, Sep 20 2020
Comments