A065167 Table T(n,k) read by antidiagonals, where the k-th row gives the permutation t->t+k of Z, folded to N (k >= 0, n >= 1).
1, 2, 2, 3, 4, 4, 4, 1, 6, 6, 5, 6, 2, 8, 8, 6, 3, 8, 4, 10, 10, 7, 8, 1, 10, 6, 12, 12, 8, 5, 10, 2, 12, 8, 14, 14, 9, 10, 3, 12, 4, 14, 10, 16, 16, 10, 7, 12, 1, 14, 6, 16, 12, 18, 18, 11, 12, 5, 14, 2, 16, 8, 18, 14, 20, 20, 12, 9, 14, 3, 16, 4, 18, 10, 20, 16, 22, 22, 13, 14, 7, 16, 1
Offset: 0
Examples
Table begins: 1 2 3 4 5 6 7 ... 2 4 1 6 3 8 5 ... 4 6 2 8 1 10 3 ... 6 8 4 10 2 12 1 ...
Links
- Joe Buhler and R. L. Graham, Juggling Drops and Descents, Amer. Math. Monthly, 101, (no. 6) 1994, 507 - 519.
- Juggling Information Service, Site Swap FAQs
Crossrefs
Programs
-
Maple
PerSS_table := (n) -> PerSS((((trinv(n)-1)*(((1/2)*trinv(n))+1))-n)+1, (n-((trinv(n)*(trinv(n)-1))/2))); PerSS := (n,c) -> Z2N(N2Z(n)+c); N2Z := n -> ((-1)^n)*floor(n/2); Z2N := z -> 2*abs(z)+`if`((z < 1),1,0); [seq(PerSS_table(j),j=0..119)];
Formula
Let f: Z -> N be given by f(z) = 2z if z>0 else 2|z|+1, with inverse g(z) = z/2 if z even else (1-z)/2. Then the n-th term of the k-th row is f(g(n)+k).
Comments