cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065256 Quintal Queens permutation of N: halve or multiply by 3 (mod 5) each digit (0->0, 1->3, 2->1, 3->4, 4->2) of the base 5 representation of n.

Original entry on oeis.org

0, 3, 1, 4, 2, 15, 18, 16, 19, 17, 5, 8, 6, 9, 7, 20, 23, 21, 24, 22, 10, 13, 11, 14, 12, 75, 78, 76, 79, 77, 90, 93, 91, 94, 92, 80, 83, 81, 84, 82, 95, 98, 96, 99, 97, 85, 88, 86, 89, 87, 25, 28, 26, 29, 27, 40, 43, 41, 44, 42, 30, 33, 31, 34, 32, 45, 48, 46, 49, 47, 35, 38
Offset: 0

Views

Author

Antti Karttunen, Oct 26 2001

Keywords

Comments

All the permutations A004515 and A065256-A065258 consist of the first fixed term ("Queen on the corner") plus infinitely many 4-cycles and they satisfy the "nonattacking queen condition" that p(i+d) <> p(i)+-d for all i and d >= 1.
The corresponding infinite permutation matrix is a scale-invariant fractal (cf. A048647) and any subarray (5^i) X (5^i) (i >= 1) cut from its corner gives a solution to the case n=5^i of the n nonattacking queens on n X n chessboard (A000170). Is there any permutation of N which would give solutions to the queen problem with more frequent intervals than A000351?

Crossrefs

Inverse permutation: A004515. A065256[n] = A065258[n+1]-1. Cf. also A065187, A065189.

Programs

  • Maple
    [seq(QuintalQueens0Inv(j),j=0..124)];
    HalveDigit := (d,b) -> op(2,op(1,msolve(2*x=d,b))); # b should be an odd integer >= 3 and d should be in range [0,b-1].
    HalveDigits := proc(n,b) local i; add((b^i)*HalveDigit((floor(n/(b^i)) mod b),b),i=0..floor(evalf(log[b](n+1)))+1); end;
    QuintalQueens0Inv := n -> HalveDigits(n,5);
  • Mathematica
    HalveDigit[d_, b_ /; OddQ[b] && b >= 3] /; 0 <= d <= b - 1 := Module[{x}, x /. Solve[2*x == d, x, Modulus -> b][[1]]];
    HalveDigits[n_, b_] := Sum[b^i*HalveDigit[Mod[Floor[n/b^i] , b], b], {i, 0, Floor[Log[b, n + 1]]}];
    QuintalQueens0Inv[n_] := HalveDigits[n, 5];
    Table[QuintalQueens0Inv[n], {n, 0, 80}] (* Jean-François Alcover, Mar 05 2016, adapted from Maple *)

Extensions

Edited by Charles R Greathouse IV, Nov 01 2009