A065298 a(n+1) is the smallest number > a(n) such that the digits of a(n)^2 are all (with multiplicity) properly contained in the digits of a(n+1)^2, with a(0)=2.
2, 7, 43, 136, 367, 1157, 3658, 10183, 32193, 101407, 320537, 1001842, 3166463, 10001923, 31627114, 100017313, 316599084, 1000104687, 3162331407, 10000483663
Offset: 0
Examples
43^2 = 1849 and 136 is the next smallest number whose square (in this case 18496) properly contains the digits 1,4,8,9.
Extensions
More terms from Marc Paulhus, Feb 04 2002
a(18)-a(19) from Sean A. Irvine, Aug 26 2023
Comments