A065332 3-smooth numbers in their natural position, gaps filled with 0.
1, 2, 3, 4, 0, 6, 0, 8, 9, 0, 0, 12, 0, 0, 0, 16, 0, 18, 0, 0, 0, 0, 0, 24, 0, 0, 27, 0, 0, 0, 0, 32, 0, 0, 0, 36, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 48, 0, 0, 0, 0, 0, 54, 0, 0, 0, 0, 0, 0, 0, 0, 0, 64, 0, 0, 0, 0, 0, 0, 0, 72, 0, 0, 0, 0, 0, 0, 0, 0, 81, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 96, 0, 0
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
smooth3Q[n_] := n == 2^IntegerExponent[n, 2]*3^IntegerExponent[n, 3]; a[n_] := n Boole[smooth3Q[n]]; Array[a, 100] (* Jean-François Alcover, Oct 17 2021 *)
-
PARI
a(n) = if(n >> valuation(n, 2) == 3^valuation(n, 3), n, 0); \\ Amiram Eldar, Sep 16 2023
Formula
a(n) = if A065330(n) = 1 then n else 0.
a(n) = A065333(n) * n.
From Amiram Eldar, Sep 16 2023: (Start)
Multiplicative with a(p^e) = p^e if p <= 3, and 0 otherwise.
Dirichlet g.f.: 6^s / ((2^s-2)*(3^s-3)).
Sum_{k=1..n} a(k) ~ (n/(log(2)*log(3))) * (log(n) + log(6)/2 - 1). (End)