cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065335 3-exponents to represent 3-smooth numbers (A065332).

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 29 2001

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := If[n/2^IntegerExponent[n, 2]/3^(e = IntegerExponent[n, 3]) == 1, e, 0]; Array[a, 100] (* Amiram Eldar, Feb 21 2021 *)

Formula

a(n) = A007949(n) * A065333(n).
a(n) = log_3(n / A006519(n)), where log_3 = A062153. For k > 0 with A065332(k) > 0: A065332(k) = (2^A065334(k)) * (3^a(k)).