cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065368 Alternating sum of ternary digits in n. Replace 3^k with (-1)^k in ternary expansion of n.

Original entry on oeis.org

0, 1, 2, -1, 0, 1, -2, -1, 0, 1, 2, 3, 0, 1, 2, -1, 0, 1, 2, 3, 4, 1, 2, 3, 0, 1, 2, -1, 0, 1, -2, -1, 0, -3, -2, -1, 0, 1, 2, -1, 0, 1, -2, -1, 0, 1, 2, 3, 0, 1, 2, -1, 0, 1, -2, -1, 0, -3, -2, -1, -4, -3, -2, -1, 0, 1, -2, -1, 0, -3, -2, -1, 0, 1, 2, -1, 0, 1, -2, -1, 0, 1, 2, 3, 0, 1, 2, -1, 0, 1, 2, 3, 4, 1, 2, 3, 0, 1, 2, 3, 4, 5, 2, 3
Offset: 0

Views

Author

Marc LeBrun, Oct 31 2001

Keywords

Comments

Notation: (3)[n](-1).
Fixed point of the morphism 0 -> 0,1,2; 1 -> -1,0,1; 2 -> -2,-1,0; ...; n -> -n,-n+1,-n+2. - Philippe Deléham, Oct 22 2011

Examples

			15 = +1(9)+2(3)+0(1) -> +1(+1)+2(-1)+0(+1) = -1 = a(15).
		

Crossrefs

Programs

  • Python
    from sympy.ntheory.digits import digits
    def a(n):
        return sum(bi*(-1)**k for k, bi in enumerate(digits(n, 3)[1:][::-1]))
    print([a(n) for n in range(104)]) # Michael S. Branicky, Jul 28 2021
    
  • Python
    from sympy.ntheory import digits
    def A065368(n): return sum((0, 1, 2, -1, 0, 1, -2, -1, 0)[i] for i in digits(n,9)[1:]) # Chai Wah Wu, Jul 19 2024

Formula

a(n) = Sum_{k>=0} A030341(n,k)*(-1)^k. - Philippe Deléham, Oct 22 2011.
G.f. A(x) satisfies: A(x) = x * (1 + 2*x) / (1 - x^3) - (1 + x + x^2) * A(x^3). - Ilya Gutkovskiy, Jul 28 2021

Extensions

Initial 0 added by Philippe Deléham, Oct 22 2011