cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065418 Decimal expansion of Hardy-Littlewood constant Product_{p prime >= 5} (1-(3*p-1)/(p-1)^3).

Original entry on oeis.org

6, 3, 5, 1, 6, 6, 3, 5, 4, 6, 0, 4, 2, 7, 1, 2, 0, 7, 2, 0, 6, 6, 9, 6, 5, 9, 1, 2, 7, 2, 5, 2, 2, 4, 1, 7, 3, 4, 2, 0, 6, 5, 6, 8, 7, 3, 3, 2, 3, 7, 2, 4, 5, 0, 8, 9, 9, 7, 3, 4, 4, 6, 0, 4, 8, 6, 7, 8, 4, 6, 1, 3, 1, 1, 6, 1, 3, 9, 1, 8, 8, 2, 0, 8, 0, 2, 9, 1, 3, 8, 6, 7, 6, 4, 0, 4, 6, 1, 7
Offset: 0

Views

Author

N. J. A. Sloane, Nov 15 2001

Keywords

Comments

For comparison: Product_{n>=5} (1-(3n-1)/(n-1)^3) = 3/8 . - R. J. Mathar, Feb 25 2009

Examples

			0.635166354604271207206696591272522417342...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.1, p. 86.

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 500; digits = 99; terms = 500; P[n_] := PrimeZetaP[n] - 1/2^n - 1/3^n; LR = Join[{0, 0}, LinearRecurrence[{4, -3}, {-6, -24}, terms+10]]; r[n_Integer] := LR[[n]]; Exp[NSum[r[n]*P[n-1]/(n-1), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits+10]] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 17 2016 *)
  • PARI
    prodeulerrat(1-(3*p-1)/(p-1)^3, 1, 5) \\ Amiram Eldar, Mar 10 2021

Formula

The constant equals Product_{n>=2} (zeta(n)*(1-2^-n)*(1-3^-n))^-A027376(n). - Michael Somos, Apr 05 2003