cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065445 Decimal expansion of Product{k=0..inf} (1+1/2^(2k))^(1/2).

Original entry on oeis.org

1, 6, 4, 6, 7, 6, 0, 2, 5, 8, 1, 2, 1, 0, 6, 5, 6, 4, 8, 3, 6, 6, 0, 5, 1, 2, 2, 2, 2, 8, 2, 2, 9, 8, 4, 3, 5, 6, 5, 2, 3, 7, 6, 7, 2, 5, 7, 0, 1, 0, 2, 7, 4, 0, 9, 0, 1, 2, 4, 0, 5, 3, 1, 7, 5, 5, 1, 7, 2, 8, 1, 6, 2, 4, 3, 9, 1, 4, 1, 3, 7, 2, 1, 6, 1, 8, 8, 6, 9, 3, 9, 9, 9, 0, 7, 6, 5, 6, 4, 3, 5, 6, 6, 7, 9
Offset: 1

Views

Author

N. J. A. Sloane, Nov 18 2001

Keywords

Comments

Scaling constant with CORDIC algorithm, see p.647 of fxtbook (see link below).

Examples

			1.646760258121065648366051222282298435652376725701027409...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 354-361.

Crossrefs

Cf. A065045.

Programs

  • Maple
    evalf(product((1+1/2^(2k))^(1/2),k=0..infinity), 120) # Vaclav Kotesovec, Sep 20 2014
  • Mathematica
    N[ Product[ Sqrt[ (1 + 1/2^(2k) ) ], {k, 0, Infinity} ], 500 ]
  • PARI
    { default(realprecision, 2080); x=prodinf(k=0, sqrt(1 + 1/2^(2*k))); for (n=1, 2000, d=floor(x); x=(x-d)*10; write("b065445.txt", n, " ", d)) } \\ Harry J. Smith, Oct 04 2009
    
  • PARI
    pent(z, n)= 1+sum(k=1,n, (-1)^k*(z^(k*(3*k-1)/2) + z^(k*(3*k+1)/2)));
    /* == prod(n>=1, 1-z^n) via pentagonal number theorem */
    N=30; u=0.25; K=sqrt( 2 * pent(u^2,N)/pent(u,N) )
    /* using prod(n>=1, 1+z^2) = prod(n>=1, 1-(z^2)^2)/prod(n>=1, 1-z^n) */
    /* gives: 1.6467602581210... */ /* Joerg Arndt, Jan 17 2011 */

Extensions

More terms from Robert G. Wilson v, Nov 19 2001
Terms corrected and terms added by Harry J. Smith, Oct 04 2009