cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065454 Let the k-th harmonic number be H(k) = Sum_{i=1..k} 1/i = P(k)/Q(k) = A001008(k)/A002805(k); sequence gives values of k such that Q(k) = Q(k+1).

Original entry on oeis.org

9, 11, 13, 14, 21, 25, 27, 29, 33, 34, 35, 37, 38, 39, 44, 45, 47, 49, 50, 51, 54, 55, 56, 57, 59, 61, 64, 67, 69, 73, 74, 75, 77, 79, 81, 83, 84, 85, 86, 89, 90, 91, 92, 93, 94, 95, 97, 98, 101, 103, 105, 107, 110, 111, 113, 114, 115, 116, 117, 118, 121, 122, 123, 125
Offset: 1

Views

Author

Benoit Cloitre, Nov 24 2001

Keywords

Comments

Shiu (2016) proved that this sequence is infinite. Wu and Chen (2019) proved that the asymptotic density of this sequence is 1. - Amiram Eldar, Jan 29 2021

Examples

			For example: H(11) = 83711/27720, H(12) = 86021/27720 and so a(2) = 11.
		

Crossrefs

Programs

  • Mathematica
    Position[Partition[Denominator @ HarmonicNumber[Range[126]], 2, 1], {x_, x_}] // Flatten (* Amiram Eldar, Jan 29 2021 *)