A065459 Number of inequivalent (ordered) solutions to n^2 = sum of 5 squares of integers >= 0.
1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 13, 12, 13, 17, 25, 22, 27, 31, 35, 38, 46, 49, 61, 61, 61, 73, 92, 83, 112, 106, 118, 127, 147, 138, 185, 175, 178, 198, 239, 212, 254, 262, 298, 294, 341, 304, 404, 376, 385, 432, 483, 441, 539, 517, 560, 551, 680, 587, 745, 693, 698
Offset: 0
Keywords
Examples
a(5)=4 because 25 produces {0,0,0,0,5}, {0,0,0,3,4}, {0,1,2,2,4}, {2,2,2,2,3}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..750
Programs
-
Mathematica
Length/@Table[SumOfSquaresRepresentations[5, (k)^2], {k, 72}]
Extensions
a(0)=1 prepended by Alois P. Heinz, Feb 17 2015